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Abstract

Code fragments are an important resource for understanding the Application
Programming Interface (API) of software libraries. Many usage scenarios for
code fragments require them to be distilled to their essence: for example, when
serving as cues to longer documents, for reminding developers of a previously
known idiom, or for displaying search results. This dissertation reports on
research on shortening, or summarizing, code fragments and makes three main
contributions: a set of lessons learned from a case study on a supervised machine
learning approach to the generation of code fragment summaries; an empirically
grounded catalog of source code summarization practices; and the design,
implementation and evaluation of a novel optimization-based summarization
technique for code fragments.

The case study on the generation of code fragment summaries was based on
a supervised machine learning approach that classifies whether a line in a code
fragment should be in a summary. We present the lessons learned that were
key to the two subsequent parts of the research: the best performing feature
set being a combination of syntactic and query-related features, and three
limitations on our supervised machine learning approach and the line-based
problem formulation. The limitations were in using line as the granularity,
obtaining training data with high quality, and using only features that are local
to a line without considering dependencies among different parts of the code.

Motivated by the limitations of line-based summaries, we studied how
humans shorten code fragments to understand the nature of the output of the
summarization process. Based on 156 hand-generated summaries obtained
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from 16 participants, we analyzed decisions on which content to select and
how to present this content in a summary. We elicited a catalog of common
summarization practices behind these decisions across the summaries, as well as
the rationale behind the practices, using a mix of qualitative and quantitative
methods. We found that none of the participants exclusively extracted code
verbatim for the summaries. Participants employed many practices to modify
the content, by trimming a line, truncating code, aggregating a large amount
of code, and refactoring code. Not only were the participants concerned with
the main goal of the task to shorten code, but also with whether the summary
looked compilable, readable and understandable.

With the insights from the machine learning case study and the catalog
of summarization practices, we devised a technique to generate summaries
constrained in both height and width: given as input a code fragment and
a query (a set of keywords), our technique produces a shorter version of the
fragment that fits in a two-dimensional space (L lines by W columns) and
that captures as much as possible of the essential elements of the original code
related to the query, while remaining readable. To generate these summaries,
we developed a code summarization tool called Konaila. Konaila maximizes the
value of the content selected and constrains the chosen content to be formatted
within the L by W space. In a human evaluation on summaries generated
from code fragments on Stack Overflow, a popular question answering forum,
we found evidence that Konaila’s summaries are effective: the majority of
Konaila’s summaries were judged to capture as much as possible the original
elements of the code related to the Stack Overflow question while remaining
readable. One important insight for future summarization technology is that
optimization is an essential step in the generation of effective summaries.

The three contributions of this dissertation are a step towards generating
effective code fragment summaries that can benefit usage scenarios involving
the vast amount of publicly available code on the web.
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Résumé

Les fragments de code (petite portion réutilisable de code source) sont d’im-
portantes ressources afin de comprendre les interfaces de programmation (API)
de bibliothèques logicielles. Dans plusieurs scénarios d’utilisation de fragments
de code, ils doivent être réduient à l’essentiel. Par exemple, lorsqu’il servent
d’indices pour de plus longs programmes, afin de rappeler aux développeurs des
idiomes qu’ils connaissent déjà ou encore pour afficher des résultats de recherche.
Cette dissertation fait un compte-rendu de la recherche sur la réduction, ou
la synthèse, des fragments de code, et apporte trois principales contributions :
des leçons apprises lors de l’étude de cas sur une approche d’apprentissage
automatique supervisée afin de générer des résumés de fragments de code ; un
catalogue de pratiques de résumé de code source justifié empiriquement ; et
une conception, une implementation et une évaluation de techniques novatrices
de résumé, basées sur l’optimisatio, pour les fragments de code.

L’étude de cas sur la génération de résumé de fragments de codes est basée
sur une approche d’apprentissage automatique supervisée qui détermine si
chaque ligne dans un fragment de code devrait faire parti de la résumé. Nous
présentons les leçons que nous avons apprises et qui sont essentielles à la réussite
des deux étapes suivantes de la recherche : la collection de caractéristiques la
plus performante, qui est une combinaison de caractéristiques syntactiques et
particulières à des requêtes, et trois restrictions de la méthode d’apprentissage
automatique supervisée et de la formulation du problème par chaque ligne. Ces
restrictions provenaient de l’emploi de lignes comme le niveaux de granularité,
des problèmes pour l’obtenir des données de bonne qualité and des problèmes

iii



de travailler seulement sûr une ligne sans considérer les dépendances entre
différentes parties du code.

Motivés par les limites de la résumé par ligne, nous avons étudié comment
les humains réduisent des fragments de codes afin de comprendre la nature du
résultat du procédé de résumé. D’après 156 résumés faites à la main par 16
participants, nous avons analyzé les décisions de sélection et de présentation du
contenu de la résumé. Nous avons obtenu un catalogue des pratiques de résumé
communes pour ces décisions parmi ces résumés, ainsi qu’une explication de
ces pratiques, en employant des méthodes qualitatives et quantitatives. Nous
avons découvert qu’aucun des participants a construit une résumé en utilisant
textuellement des fragments de code en façon exclusif. Les participants ont
utilisé diverses techniques afin de modifier le contenu, raccourcir une ligne,
tronquer le code, amasser de vaste quantités de code et réingénierie logicielle.
Les participants n’étaient seulement occupés par l’objectif principal de réduction
de code, mais voulaient également obtenir un code lisible, compréhensible et
pouvant être compilé.

En prenant en considération ce que nous avons appris des études de cas
sur l’apprentissage automatique et le catalogue de pratiques de résumé, nous
avons conçu une technique pour créer des résumés restreintes par leur hauteur
et leur largeur : à partir d’un fragment de code et d’une requête (un ensemble
de mots clés), notre technique produit une version du fragment plus courte
qui occupe un espace bidimensional de L lignes par W colonnes et qui capture
autant d’éléments du code original que possible, relatifs à la requête, tout en
demeurant lisible. Afin de générer ces résumés, nous avons développé un outil
de résumé de code : Konaila. Konaila utilise un algorithme d’optimisation qui
maximise la valeur du contenu sélectionné et le restreint à l’espace bidimensional
en L par W. Dans une évaluation avec des juges humaines sur les résumés
créées à partir de fragments de code sur ¨Stack Overflow¨, un site internet
populaire oú les utilisateurs répondent à des questions, nous avons découvert
des indications démontrant que les résumés de Konaila sont efficaces : il fut jugé
que la majorité des résumés de Konaila capture autant d’éléments originaux du
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code relativement aux questions de "Stack Overflow" que l’espace le permet, tout
en demeurant lisibles. Un important resultat pour les prochaines technologies
de résumé serait que l’optimisation est une étape essentielle à la creation de
résumés efficaces.

Les trois principales contributions de cette dissertation forment une étape
vers la création efficace de résumé des fragments de code qui peuvent bénéficier
aux scénarios d’utilisation comportant de vastes quantités de code web à accès
public.
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Chapter 1
Introduction

Code examples are an important type of artifact in software engineering. The
Application Programming Interfaces (API) documentation for many libraries
contains human crafted code examples, which are typically small fragments of
code demonstrating the usage of the API. Code examples in formal documen-
tations are one of the most effective component of good documentation [58].
Code examples have become an expected component of formal Application
Programming Interfaces (API) documentation [78].

Programmers search for code examples frequently and extensively: nearly a
third of the respondents in a survey of programmers searched for code examples
every day, and programmers working on implementation tasks in the field
conduct web search sessions almost exclusively for finding code examples [83].
Code examples are often the explicit targets of web searches [48, 71, 83, 84].
Overall, the web is an important resource for a programmer: as much as 20%
of a programmer’s time could be spent on the web [7].

Code examples are also an important element on popular question answering
forums such as Stack Overflow.1 Stack Overflow attracts 32 million visitors
monthly, including 25 million returning visitors; these returning visitors on
average use Stack Overflow 6 times every month.2 Sixty-five percent of the

1http://stackoverflow.com
2http://stackoverflow.com/research/developer-survey-2015
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answers accepted by the original questioner contain code examples [89], while
unanswered questions often lack code [3].

Although most software engineering researchers will agree that code ex-
amples are useful and desirable in many software engineering contexts, the
question of code example effectiveness is much more elusive. What makes a
code example effective? While the effectiveness or usability of a code example
can generally be related to its intended usage, evidence is mounting that concise
code examples are particularly desirable, especially for pedagogical purposes:

“It’s tough to know the context of the example and yet it has to be
very small, and only highlight exactly what the concept in the API is
that you’re looking for”—a Team Lead at Microsoft [78].

Highly rated answers on Stack Overflow tend to include code examples that
are concise [65]. These fragments of code are typically less than four lines and
are “shorter than similar code inside other answers to the same question” with
“reduced complexity” [65]. In contrast, longer code examples can be difficult to
understand [78] or even be misleading [21]. Longer code examples also occupy
valuable screen real estate for summarizing documents, e.g., in web search
results [88]. Like summaries for text documents and thumbnails for images,
there are many situations where compact versions of a code example could be
useful. These include: to display the result of code searches [88], to show code
outline views in integrated development environments [20], and in the table of
contents of API documentation.

Given the importance of code examples, the amount of publicly available
source code, and the desirable properties of concise code examples, there is great
potential for technology that can automatically shorten a code example, or more
generally any code fragment. No such technology exists, and current knowledge
and technology on natural-language summarization do not necessarily apply
to source code because of fundamental differences in structure of the input
data. For example, the assumption that topic and concluding sentences in
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paragraphs are likely summary sentence candidates [43] does not directly apply
to source code.

This dissertation reports on our research on summarizing code examples,
more formally, code fragments, which we define as partial programs that illus-
trate the use of programming idioms, constructs, concepts, or API. We report
on the challenges involved in devising an automatic technique for generating
code fragment summaries. While most of the efforts in code summarization
were targeted to code-to-text summarization, including generating textual
keywords [28, 79] and textual summaries [62, 64, 73, 85] from source code in
a project, we targeted our research on code fragment-to-code fragment sum-
marization. Research has shown that textual summary snippets that contain
exact phrases from the web page are more effective in providing evidence for
a searcher to assess the relevancy of the page [97]. This finding motivated
us to investigate the generation of code fragment summaries as opposed text
summaries: having the output also as a code fragment enables a larger overlap
with the original fragment compared to having the output as natural language
text.

This dissertation contributes to the software engineering body of knowledge
in three ways: lessons learned from a case study on a supervised machine learn-
ing approach to generate code fragment summaries; an empirically grounded
catalog of summarization practices that serve as requirements for the problem
formulation and techniques; and the design, implementation and evaluation of
a novel summarization technique. We focused on summarizing code fragments
written in Java.

Case study on a machine learning approach for code fragment summa-
rization: We first investigated the generation of code fragment summaries
using a supervised machine learning approach that classifies whether a line in
a code fragment should be in a summary. Using features known to work well
in text summarization, we investigated three types of features that exploit:
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syntactic constructs in a code fragment, whether a line is related to the given
query, and API calls. We investigated four research questions:

• Feature Investigation: Which feature combination performs well in the
summary line classification problem?

• Baseline Comparison: Are the summaries based on a selective combina-
tion of the features better than three baselines, including a classifier that
only depends on query features that did not require code parsing?

• Annotator Comparison: How do the summaries we generate compare to
human-generated summaries?

• Overall Summary Quality: What is the quality of the overall summary?

Empirically grounded catalog of summarization practices: We studied how
humans shorten code examples in order to understand what natural summaries
look like. We asked the participants to provide free-form summaries because we
found that line-based summaries often do not form sensible summaries. Using
a mix of qualitative and quantitative methods, we extracted code summariza-
tion practices and their justification from human participants to inform the
development in code fragment summarization. We had two research questions
in this study:

• Selection: Which parts of the code from an original code fragment
should be selected for a summary, and why?

• Presentation: How should the code be presented in a summary, and
why?

Generation of summaries constrained by height and width: With the
insights from the machine learning case study and the catalog of summarization
practices, we devised a technique to generate summaries constrained in both
height and width: given as input a code fragment and a query (a set of
keywords), our technique produces a shorter version of the fragment that fits
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1.1 Definition of a Code Fragment

in a two-dimensional space (L lines by W columns) and that captures as
much as possible of the essential elements of the original code related to the
query, while remaining readable. To generate these summaries, we developed
an optimization-based algorithm and the corresponding tool called Konaila.
For the evaluation for the summaries, we report on an experiment based on
two research questions:

• Ratings: How much do the Konaila summaries capture the original
elements of the code related to the query while remaining readable?

• Baseline comparison: How good are the Konaila summaries compared
to a baseline using a competitive algorithm that included code units that
maximally fill the given space?

For the rest of this chapter, we first provide a definition of a code fragment
(Section 1.1) and the motivation for code fragment summaries (Section 1.2).
In Section 1.3, we outline five dimensions important for the design of code
summarization techniques, as well as the two problem formulations we used in
our research. In Sections 1.4 to 1.6, we provide an overview on the research
that corresponds to the three contributions of the dissertation: the lessons
learned from the machine learning study on line-based summaries; the catalog
of summarization practices; and the design, implementation, and evaluation of
Konaila. Section 1.7 outlines the structure of the entire dissertation.

1.1 Definition of a Code Fragment

The definition of code examples we have used thus far is what Robillard [77]
called small fragments of code with at least one of the following intended usage:

• “intended to demonstrate how to access the basic API functionality,” or

• as part of a series of code fragments that “form a more or less complete
application” in a tutorial.
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1.2 Motivating the Need for Code Fragment Summaries

We refer to these two categories of code examples using a more general terminol-
ogy, code fragments. We distinguish these two categories of code examples from
code examples that form complete applications, including “both the demon-
stration samples sometimes distributed with an API and open source projects
that developers can download from various source code repositories” [77].

In addition to documentation, human-crafted code fragments also are
prevalent in community question answering sites such as Stack Overflow. A
study on code fragments from Stack Overflow posts [89] found that 58% of
the accepted answers on questions tagged as “android” contain at least one
code fragment. Filtering out code fragments with less than three lines of code
(LOC),3 the average length of the remaining fragments was 16.4 LOC and
the median was 9 LOC. In terms of the content of the fragments, 17% were
complete Java files, 16% were full Java method declarations, and 66% were of
sets of Java statements.

Automatically extracted or retrieved code fragments also appear in research
code search engines [5, 11, 103] and commercial search engines such as Black
Duck Open Hub Code Search4 and Codota.5

1.2 Motivating the Need for Code Fragment Sum-
maries

Short code fragments are not only easier to understand, but also appropriate
for many usage contexts where for code fragments have to be distilled to their
essence.

3The authors determined that code fragments less than three lines typically lack context
that are essential for the fragment usage [89].

4https://code.openhub.net/
5http://www.codota.com/
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1.2 Motivating the Need for Code Fragment Summaries

1.2.1 Serving as Cues for Longer Documents

Figure 1.1 illustrates a mock-up showing how a code fragment summary is
useful as a cue for a long web page (Figure 1.2). The mock-up demonstrates
a code fragment summary in a pop-up window as a mouse is hovered over
the link of the web page in Figure 1.2. Konaila (Chapter 6) generated this
summary automatically, taking as input the code fragment extracted from the
web page in Figure 1.2.

1.2.2 Search Scenarios

To search for code fragments, a programmer must interact with summary
representations of code fragments in the search results. We illustrate some of
such search scenarios:

Summary Snippet Returned by a General Search Engine: General purpose
search engines typically represent a web page in the results list using a textual
summary of the web page, along with the title of the web page and the link.
Figure 1.3 shows a textual summary snippet of a web page returned by Google
for the search query “android drag and drop events.” The summary is extracted
as if the code were text. Even when a web page containing a relevant example
is returned by a search engine, the summary foils a programmer’s attempt
to evaluate whether a search hit is worth pursuing. In this situation, the
programmer either overlooks relevant results or has to open and scan many
of the pages linked from the result page [88]. Yet, in the context of general
search engines, textual snippets form a significant part of evaluating whether a
particular returned link is worth visiting. Cutrell and Guan found that of the
time a searcher spent on a search result page, forty percent of the time was on
the textual snippets [18].

Summary Snippet Returned by a Community Question Answering Forum:
Stack Overflow uses similar textual summaries in the results page, along with
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1.2 Motivating the Need for Code Fragment Summaries

Figure 1.1: A mock-up of a pop-up window containing a code fragment
summary. Konaila automatically generates this summary, taking as input code
fragment in Figure 1.2
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1.2 Motivating the Need for Code Fragment Summaries

Figure 1.2: A web page containing a code fragment of interest. Konaila can
automatically generate a summary for this code fragment (see Figure 1.1)

Figure 1.3: Summary for the top search result for the query “android drag and
drop events” on the Google search engine
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1.2 Motivating the Need for Code Fragment Summaries

Figure 1.4: Summary for the top search result for the “android drag and drop
events” on Stack Overflow

Figure 1.5: Summary for a search result for the “android drag and drop events”
on the Black Duck Open Hub code search engine

the question, number of votes and tags. Figure 1.4 shows such a summary for
the same query “android drag and drop events.”

Summary Returned by Code Search Engines: Researchers [5, 11, 103] and
companies have built code specific search engines and recommendation systems
for automatically extracting or retrieving relevant code fragment. These sys-
tems mainly focus on the accuracy and usefulness of code examples extracted
or retrieved. Figure 1.5 illustrates a summary snippet on the same query
returned by a commercial engine called Black Duck Open Hub. The summary
is constructed from code surrounding the matched query keywords, essentially
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1.2 Motivating the Need for Code Fragment Summaries

Figure 1.6: Summary for a search result for the “android drag and drop events”
on the Codota search engine

displaying a small contiguous window of code surrounding the keywords. Be-
cause code is not linear, such a summary snippet is not very informative, as
Sim et al. reported [83].

Figure 1.6 illustrates a summary snippet from Codota, an open source
engine made available by researchers.6 Improving on the window approach,
Codota’s summary includes source code statements (lines 86 and 91). However,
the summary can still miss the logic of the code (such as in line 87) and the
method call back onTouchEvent (line 83). The call back is especially important
because a programmer has to know to override this particular method from
the Android API in order for the application to react to a touch event and
execute the code between lines 85 and 92.

6http://www.codota.com/
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1.3 Design Space and Problem Formulation

1.3 Design Space and Problem Formulation

Based on a review of work in text summarization and lessons learned from
the dissertation research, we distilled this knowledge into five dimensions in
the design space of code summarization in Chapter 3. The following is a brief
description of the dimensions.

Declarative Completeness (Input Dimension): This dissertation is specifically
about summarizing code fragments, as opposed to requiring the whole program
or compilation unit as part of the input. While technology capable of summa-
rizing a code fragment can support many application scenarios (Chapter 1.2),
analyzing code fragments presents additional technical challenges.

Query Context Dependence (Input Dimension): Is the problem query-based
summarization or not? In text summarization [72], researchers draw the dis-
tinction between generic summaries (without a query) and query-based or
task-specific summaries. This dissertation specifically focuses on query-based
summaries.

Granularity (Output Dimension): The output granularity in the extraction is
an important part of the problem formulation and also in the implementation
of the solution technology. Is a summary a set of tokens, lines, statements, or
some other granularity? We used the line granularity (Section 3.1.3) in the case
study and a granularity close to the statement level (Section 6.2.2) in Konaila.

Summary Composition (Output Dimension): Is the summary generated extrac-
tive (summaries generated by copying and pasting selected parts of the original
code verbatim) or abstractive (summaries with modifications to the original
code)?

Space Constraints (Output Dimension): In a textual summary, summary sen-
tences within a paragraph are given a one-dimensional total order and printed
in a two-dimensional textual display with line wrap. In a code summary,
however, selected code cannot be simply printed with line wrap because in
code, formatting affects readability.
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1.4 Line-Based Summary Generation Case Study

In this dissertation, we investigated two query-based code fragment sum-
marization problems in this design space. Based on a definition of a text
summary [72], we generated line-based extractive summaries as an initial
case study. In this formulation, we define a code fragment summary as a code
fragment shorter than the original one, where any line in the summary is more
informative (in the context of a specific query) than any other line not in the
summary.

A lesson learned from the line-based extractive summarization was that
line-based summaries did not always result in sensible code fragment sum-
maries. Together with the summarization practices we learned empirically,
we formulated a second summarization problem with constraints in both
height and width of the summaries: the generation of summaries con-
strained in both height and width. Given as input a code fragment and a query
(a set of keywords), produce a shorter version of the fragment that fits in a
two-dimensional space (L lines by W columns) and that captures as much as
possible of the essential elements of the original code related to the query, while
remaining readable.

Chapter 3 expands on the five dimensions in the design space and the
two problem formulations. Part of the discussion on these dimensions and
formulations appear in two conference publications [100, 102] and a published
book chapter [101].

1.4 Line-Based Summary Generation Case Study

We conducted a case study on the generation of code fragment summaries
using a supervised machine learning approach that classifies whether a line
in a code fragment should be in a summary. The problem formulation here
was the line-based extractive summarization we presented in Section 1.3. We
examined whether features known to work well in text summarization could be
applied to the problem of code fragment summarization. The code fragment
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1.4 Line-Based Summary Generation Case Study

summarization features included syntactic constructs in a code fragment, the
amount of overlap between tokens in the source code and query words, and
features describing API calls. For training and evaluating our classifier, we
constructed two corpora, each consisting of a set of code fragments and the
corresponding summary oracle. The summary oracle for the main corpus was
constructed by four human annotators (Section 4.1.1), while the oracle for the
secondary corpus was obtained through formatting conventions, i.e., the lines
in a code fragment that is bold in a documentation (Section 4.1.2).

We showed that a combination of syntactic constructs in a code fragment
and the overlap with a query resulted in better summaries, compared to other
combinations of the feature sets, with statistical significance. This combination
of features could approximate summaries in the oracle with a precision of 0.71
when we allowed summaries to be of the same length as the oracle.7 To interpret
the level of precision reported, we computed the level of agreement among
the summaries generated by the four annotators, and determined whether
using our automatically generated summaries in place of one of the annotator’s
summaries would degrade the level of agreement. We did not find a degradation
in the agreement, indicating that given this data, the classifier is an effective
summarizer for this problem. In addition, we found that API calls related
features did not improve the classification performance.

We also report on three limitations which we subsequently addressed in
later parts of the research: a limitation on line granularity, the difficulty in
obtaining training data with high quality, and limitations on features that were
local to a line without considering dependencies among different parts of the
code.

Chapter 4 presents the details of the machine learning summarization
approach and the evaluation. Part of this work appears in a conference
publication [100].

7The measure is called R-precision (Section 4.3.2).
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1.5 Catalog of Summarization Practices

We conducted a study to learn code summarization practices and their justifi-
cation from human participants, with the goal of informing future development
in source code summarization technology. Motivated by the limitations of
line-based summaries, we asked participants to provide free-form summaries.
The study considered 156 summaries generated by 16 programmers on 52 code
fragments. Generating these summaries required determining which content
to select and how to present this content. Using a mix of qualitative and
quantitative methods, we analyzed practices behind these decisions across the
hand-generated representations, as well as the rationale behind the practices.

We found that none of the participants exclusively extracted code verbatim
for the summaries. Participants employed many practices to modify the content,
by trimming a line, truncating code, aggregating a large amount of code, and
refactoring code. Not only were the participants concerned with the main
goal of the task to shorten code, but also with whether the summary looked
compilable, readable and understandable. This study provides new ideas for
how an automatic algorithm can summarize code to make the output code
concise, similar to the work on what makes a good summary in the field of text
summarization [36].

Chapter 5 describes the summarization study, which appears in a conference
publication [102].

1.6 Generating Summaries Constrained in Both
Height and Width

We devised a technique to generate summaries constrained in both height and
width using an optimization-based algorithm. We implemented our technique
in a tool called Konaila. Konaila uses optimization that maximizes the value of
the content selected and constrains the chosen content to be formatted within a
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1.7 Organization of the Dissertation

space of L linesW characters wide. Konaila determines the value of a code unit
using several factors: the similarity of the words in a code unit to the query,
the extent to which the syntax of the code unit is indicative of importance, and
the extent to which a code unit is involved in dependencies among a variable
declaration and its usage. For example, a code unit reading or writing to a
variable x is more likely to make sense in a summary if x’s variable declaration
is also included in the summary.

In a human evaluation of 364 sets of summaries generated from code
fragments found on Stack Overflow, we found evidence that Konaila’s summaries
are effective. First, the majority of Konaila’s summaries (52.1%) captured as
much as possible the original elements of the code related to the Stack Overflow
question while remaining readable. Second, Konaila’s summaries were better,
with statistical significance, than a competitive baseline based on an algorithm
that included code units that maximally fill the given space. One important
insight for future summarization technology is that using optimization is an
essential part in the effectiveness of Konaila’s summaries. The conclusion is
that an approach such as Konaila, based on the use of meaningful code units,
a two-dimensional formulation, simple-to-compute features (based on code
constructs, the overlap with the given query, and simple program analysis
to determine the variation definition-use relationships within a method can
produce summaries that captured the essential elements of the original code.

Chapter 6 describes the design, implementation and evaluation of Konaila.

1.7 Organization of the Dissertation

We begin the remainder of the dissertation with a discussion of related work
(Chapter 2). We then present in Chapter 3 an overview of five dimensions in
the design space of code summarization techniques, along with the two problem
formulations we used in our research.
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1.7 Organization of the Dissertation

In Chapter 4, we describe a case study on a supervised machine learning
technique to generate line-based code fragment summaries, taking advantage
of three different types of features: syntactic constructs in a code fragment,
the amount of overlap between tokens in the source code and query words,
and features describing API calls. We present the lessons learned that were
key to the two subsequent parts of the research: the best performing feature
set being a combination of syntactic and query-related features, and three
limitations on our supervised machine learning approach and the line-based
problem formulation. The limitations were in using line as the granularity,
obtaining training data with high quality, and using only features that are local
to a line without considering dependencies among different parts of the code.
The lessons learned from this case study constitute the first contribution of
this dissertation.

We present in Chapter 5 a study on how humans shorten code fragments,
in order to understand the nature of the output of the summarization process.
Based on an analysis of practices we observed and their justification, we
constructed a catalog of summarization practices that described decisions on
which content to select and how to present this content in a summary. This
catalog serves as requirements for the problem formulation and techniques to
generate code fragments summaries, and constitutes the second contribution of
this dissertation.

Using insights from the case study on line-based code fragment summariza-
tion and the catalog of summarization practices, we devised an optimization-
based technique for generating summaries constrained in both height and width.
We describe Konaila, the tool embodying this technique, and the evaluation
in Chapter 6. We report on the evidence that Konaila generates effective
summaries. Konaila’s summaries were better, with statistical significance, than
a competitive baseline that included code units that maximally fill the given
space. The design, implementation, and evaluation of Konaila form the third
contribution of this dissertation.

Finally, we discuss the contributions and future work in Chapter 7.
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Chapter 2
Related Work

In this Chapter, we focus the related work discussion in the area of software
engineering. We defer the discussion on text summarization that helped form
the basis of the formulation of the code fragment summarization problem to
Chapter 3.

We first discuss in Section 2.1 summarization technology in software engi-
neering that is mostly related to the machine learning case study (Chapter 4)
and the empirical study on summarization practices (Chapter 6). We then
present work related to the question of what is a good code example in Sec-
tion 2.2. This question is the main topic of interest in the empirical study
on summarization practices (Chapter 5). Finally, we discuss summaries used
in various search interfaces in Section 2.3 and source code search engines in
Section 2.4.

2.1 Summarization of Software Artifacts

We look at summarization technology that takes as input source code in a
project:

Code to text: Many efforts have focused on the generation of different forms of
textual summaries for project code. These textual summaries are in three forms:
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2.1 Summarization of Software Artifacts

(1) a succinct set of keywords [28, 79]; (2) natural language phrases or sentences
for specific code elements, such as exceptions [12], method parameters [87], a
set of statements [86, 98], a method [85], and a class [62]; (3) textual summary
interleaving with code elements for the purpose of summarizing a commit [73]
or producing a release note on a large number of changes [64].

Code to code-like documentation: Buse and Weimer [13] proposed a technique
to generate code-like documentation on a code change (a diff), using symbolic
execution [40]. The summaries were of the form: “When calling A(), If X,

do Y, Instead of Z.” The intention was to summarize the conditions for the
control flow of a program (at run-time) to reach the changed statements.

In terms of techniques used, one main category of solutions [28, 79] con-
structed summaries by treating code as a block of natural language text, taking
advantage of ideas from text summarization. One of the earliest techniques [28]
used vector space model, a representation of text as a set of documents (vectors)
containing terms. In the context of source code, Haiduc et al. modelled the
code in a project as a vector space, a method as a vector, and code identifiers as
terms. Their summarizer uses cosine similarity with tf-idf term weighting [80]
to retrieve important terms as the summary. Our call frequency features in
the machine learning case study (Section 4.2.3) were inspired by this vector
space model.

Another key category of solutions involved applying known patterns that
found success in summarization tasks [62, 73, 85, 86]. This knowledge-base
approach was also taken by Konaila. Konaila uses patterns (we called them
salience filters, Section 6.3) derived from our machine learning case study, our
empirical study on summarization practices, and the heuristics used in the work
by Sridhara et al [85]. Sridhara et al.’s work on generating textual summaries
for methods was based on heuristics to select code units within a method. For
example, code of the form “return;” should not be in a summary. Comparing
to Sridhara et al.’s work, there are two novel ideas in Konaila: the use of
formatting to deal with a constrained space, and optimization for selecting
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high-valued units.
The main difference between our work and these efforts is in the problem

formulation: our work is a form of code fragment to code fragment
summarization. Both the line-based summarizer and Konaila shorten code
fragments instead of producing text. In addition, our summarizers handle
code fragments, as opposed to source code in a complete program in these
previous summarization efforts. Code fragments are more difficult to parse and
to be applicable to standard program analysis techniques. The capability to
handle code fragments enables Konaila to summarize code fragments on the
web, including Stack Overflow posts and on-line documentation.

The capability to parse code fragments is not unique to our work, however.
Moonen’s work on parsing with Island Grammars [61] can handle code fragments
with irregularities that include syntax errors and embedded code in another
programming language. The idea of Island Grammars is to specify precise
production rules describing the parts of the code of interest (the islands) while
employing liberal production rules to match the remaining code (the water).
However, because we needed to fully parse the code fragment, we did not
find it sufficient to use a partial parser such as Moonen’s parser. We took
a conceptually different approach: instead of ignoring parts of the code, we
fully parsed the code fragment by specifying exactly what constitutes a code
fragment in our grammar (Section 6.2). In the implementation of our parser, in
order to allow slight irregularities in a code fragment that are not specified by
our grammar, we allowed n number of lines to be non-parsable.1 We empirically
determined that n = 3 worked well in terms of accepting Java code fragments
while not accepting spurious fragments.

Finally, several researchers have investigated text to text summarization,
the summarization of software textual artifacts such as bug reports [50, 54,
74]. The earliest work was the application of single-document extractive

1Another option would be to use the number of non-parsable tokens. However, parsers
may not recover from a non-parsable token immediately; thus, this number is not a good
measure in this context.
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summarization on bug reports by Rastkar et al [74]. They applied a logistic
regression classifier trained on generic conservation data (emails and meeting
data) and compared against the classifier specifically trained on bug reports.
They found that the classifier trained on bug reports out-performed the generic
classifier. Here the major difference with code fragment summarization is in
the input to the summarization procedure (i.e., text as opposed to code). This
difference required our work to use features and design that are specific to
code.

2.2 Studies on Code Examples

The following studies provided us with valuable knowledge on what is important
in a code example. These studies are most related to the study described in
Chapter 5.

Nasehi et al. investigated the characteristics of code examples in highly
rated answers on Stack Overflow [65]. They found that these examples tend
to be “concise”: the examples are typically less than four lines and “shorter
than similar code inside other answers to the same question,” with “reduced
complexity” and “unnecessary details” left out. Our focus on summarization
was motivated by these highly regarded concise examples. However, in our
study (Chapter 5), the design differed in that we studied summarization in a
lab setting with access to the summary author. This design was complementary
to Nasehi et al.’s study which had more generalizability but lacked the rationale
behind decisions taken in generating concise code by the authors themselves.
For example, was a particular part of the code intended to be an essential part
of the code example, or was it just a detail? The lab setting also allowed us to
have multiple authors summarizing the same code example so that we could
examine the variability among different code summary authors.

Rodeghero et al.’s eye-tracking study [79] investigated which part of the
code is important for a code summary, The study involved tracking participants’
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2.2 Studies on Code Examples

eye movements and gaze fixation during a code-to-text summarization task.
The assumption here was that eye gaze on a part of the code was indicative of
the importance for inclusion in a summary. The authors found that a list of
keywords generated by the term weighing scheme tf-idf [80] (as in the work
by Haiduc et al [28] described in Section 2.1) were important for the selection
task. The authors also investigated whether three types of program constructs
(signatures, control-flow constructs, and invocations) attracted more eye gaze
than other parts of the code. They found that programmers spent significantly
more gaze time and fixated more often on signatures, but not on control-flow
constructs and invocations. In the context of the summary-line classification
task, results from our feature comparison study (Figure 4.6, groups 1, 2, and 4)
corroborated these findings: leaving out these constructs from the classification
model decreased the classification performance, except for the if expression.
However, the results from our empirical study in Chapter 5 were not entirely
consistent with these findings; we found that all three types of constructs were
important for summarization (Section 5.3), but program constructs were not
the only factor important to summarization. We found that factors such as
the cognitive model of the intended summary reader (Section 5.3.3) and space
constraints (Section 5.4.4) could have an impact on whether a part of the code
is important for inclusion in a summary. Finally, our study in Chapter 5 also
differs from Rodeghero et al.’s study in that we looked at summarization as a
more open ended problem, on what a natural summary looks like, rather than
only on the selection aspect.

Studying what is a good concise representation for source code also relates
to work in the search engine domain on what information should be included
in a textual snippet in the search result [15, 18, 69, 96, 97]. The goal for this
line of work is to more effectively help a user evaluate a search result. For
example, snippets including query terms [15] or exact phrases from a web page
being summarized [97] resulted in better user performance in search tasks.
These results motivated us to focus on the generation of code fragments as the
summary output and using query as a feature in both of our summarizers.
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In addition, Cutrell and Guan investigated whether varying the amount
of information in the textual snippets had an effect on users’ decisions on
the pages to visit. They found that for queries intended for finding a piece
of information (called “informational queries” in the field of web search [8]),
longer snippets resulted in better user performance. For queries intended for
finding a particular site the user has in mind (called “navigational queries” [8]),
shorter snippets resulted in better user performance. This result is consistent
with our experiments (Section 6.5.4) that longer code fragment summaries (5
lines by 50 characters) were judged to be significantly better than shorter ones
(3 lines by 50 characters).

2.3 Code Examples in Search Engines

Search engines typically generate a summary snippet (e.g., Figure 1.3 for
Google and Figure 1.4 for Stack Overflow) by extracting the text surrounding
the keywords. Code specific search engines usually generate a snippet of code
surrounding the keywords (e.g., Figure 1.5 for the Black Duck Open Hub
code search engine and Figure 1.6 for Codota). However, these summaries
are limited because important parts of the code example do not always lie
in a small window surrounding the keywords. Previous efforts have aimed to
improve this situation by better enabling a programmer to evaluate whether a
search hit contains a relevant API element [88], or a full code example [6, 31]:

Mica [88] augments Google search results with a side-bar that contains
code-specific information for search hits containing code examples. The side-
bar is essentially an index of API elements (such as methods, classes, and
field names) referenced in those code examples. When an API element in the
side-bar is moused-over, the interface of the side-bar highlights the search hits
containing that API element. This interface allows programmers to better
evaluate whether a search hit contains a code example containing an API
element of interest.
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Assieme [31] and Blueprint [6] both present full code examples from web
pages returned by a search engine. Assieme is an web interface that displays full
code examples that match the query, as well as statistics on the API elements
referenced in an example. In contrast, Blueprint’s interface is integrated with
the development environment. The interface displays code examples returned
by Google in a consistent format: each search hit consists of the title of the
web page from which the code example is extracted, the link to the page, and
the full example. These two systems provide a code example centric view on
results from a general search engine.

Our work in code fragment summarization is complementary to these three
efforts on code example centric interfaces. Our code fragment summaries can
be used in place of the full examples in Assieme or Blueprint, or to augment
Mica’s interface.

2.4 Source Code Search Engines

Source code search engines attempt to synthesize code examples or find relevant
APIs from large code repositories that match a programmer’s query [5, 11, 14,
32, 37, 38, 59, 63, 103]. These systems take advantage of some notion of repeated
patterns when determining the important elements in code. Bajracharya et
al. generate code examples from a large repository of source code [5]. Their
approach attempts to retrieve the most important code entities from the
repository given a query, using cosine similarity and the tf-idf term weighing
scheme [80]. In their approach, a code entity is a vector of terms extracted
not only from identifiers and comments (as in Haiduc et al. [28] described in
Section 2.1), but also from code entities with similar API usage.

Another example is the eXoaDocs system that augments API documentation
with code example summaries [37, 38]. The tool generates code examples by
mining from the results of Koders, a source code search engine. The component
responsible for summarization resembles our tools, also using syntactic and
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query features. The eXoaDocs system distills a summary from a list of candidate
results from the Koders code search engine.

Our summarization work differs in the purpose. All these approaches
summarize multiple occurrences of code, including results from a code search
engine or a large code repository, whereas our algorithm aims at summarizing
single code fragments. This is analogous to the distinction between multi-
document summarization and single-document summarization in the area of
text summarization [66].

Code fragment summaries are a type of representation extracted from the
code. The idea that code contains more than just code for the machine is also
found in the literate programming methodology which encodes documentation
as part of the code [41].
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Chapter 3
Code Summarization Dimensions and

Problem Formulation

The area of text summarization is well established [53, 66, 72]. There are several
parallels between summarizing text and code that researchers in code summa-
rization can exploit for problem formulations and the design of summarization
solutions.

One such parallels is the definition of a summary. We start with a definition
of textual summary proposed by Radev et al. [72]. A textual summary is a
text:

• that “is produced from one or more texts,”

• that “conveys important information in the original text(s),” and

• that “is no longer than half the original text(s) and usually significantly
less than that” [72, page 399].

In this chapter, we focus the design space discussion on summarizing a single
code fragment as opposed to multiple ones (the first bullet of Radev et al.’s
definition above). We also focus on the problem of generating code fragment
summaries as opposed to text summaries describing or explaining code as in
many efforts described in Chapter 2 [12, 28, 62, 64, 73, 79, 85, 86, 87, 98].
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3.1 Design Space

Section 3.1 presents five dimensions in the design space for the problem
of code summarization. Two of the dimensions concern the input to the
summarization problem; three concern the output, the summaries. These
dimensions also have implications in the design and the implementation of
the two summarization technologies presented in this dissertation (Chapters 4
and 6). With these dimensions in mind, we present different formulations of
the summarization problem in Section 3.2.

3.1 Design Space

The five dimensions in the design space of code summarization, the first two
regarding the input and the last three regarding the output summaries, are as
follows:

3.1.1 Declarative Completeness

Does summarization take as input code with declarative completeness, i.e., in
a complete program or compilation unit? This dissertation is specifically about
summarizing code fragments. Among the efforts in code summarization we
presented in Section 2.1 [12, 13, 28, 62, 64, 73, 79, 85, 86, 87, 98], all except
the AutoComment tool [98] take code fragments as input. The capability to
handle code fragments enables use cases such as summarizing code fragments
on Stack Overflow (Section 1.2). There are challenges in parsing an incomplete
compilation unit and applying program analysis techniques on an incomplete
program. We describe in more details the challenges in parsing and applying
program analysis on code fragments.

Challenges in Parsing: Most parsers do not properly parse code fragments
because code fragments are typically incomplete compilation units and contain
non-Java tokens such as “...”. In the initial case study on code fragment sum-
marization (Chapter 4), we handled incomplete compilation units by building
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an abstract syntax tree (AST) for multiple cases (Section 4.2.1): the code
fragment as it is, the code fragment put in an empty Java compilation unit
stub, and the code fragment put in an empty method declaration stub in a
Java class, and measured which case resulted in the most complete AST. In
this context, an AST is more complete than another when there are more
code constructs (e.g., method invocations, method declarations, exception
blocks, and conditional statements) that were recognized by the parser. We
also engineered the algorithm to remove invalid tokens such as “...”.

We improved on this approach in Konaila by modifying an existing Java
grammar to accept code fragments (Section 6.2.1). This design decision was con-
ceptually and implementation-wise cleaner than transforming a code fragment
into a Java compilation unit by enclosing the fragment in a stub.

Challenges in Program Analysis: Analyses that are handled by existing
compilers on complete programs become more challenging for code fragments.
For example, extracting which API elements (e.g., methods) are used (e.g.,
called) from a code fragment involves determining the type bindings of object
variables that are the target of methods. In languages such as Java, this task
is normally handled by compilers. However, in the context of a code fragment,
resolving type bindings is technically challenging and imprecise because a code
fragment is generally a subset of the whole program, possibly without the
necessary dependency information for the usual type binding resolution to
work. One technique that can infer type bindings from code fragments is partial
program analysis [19].

For example, suppose that we are presented with the code in Figure 3.1a.
If we want to know which method is called at line 6, a syntactic analysis of
only the code shown in Figure 3.1a can only tell us that a method named add

with one parameter is called at line 6, but not which class declares add nor the
type of the parameter. This is especially problematic when multiple classes
declare methods with the name add and one parameter. Improving upon pure
syntactic analysis, partial program analysis infers that method A.add(String) is

29



3.1 Design Space

1 import p.A;
2 class B {
3 void main () {
4 A a = new A();
5 a.p1 = ``hello '';
6 a.add(a.p1);
7 a. remove (a.p1);
8 }
9 }

(a)

1 package p;
2 public class A {
3 String p1;
4 void add( Object o) {}
5 void remove ( Object o) {}
6 }

(b)

Figure 3.1: (a) An incomplete Java program demonstrating the difficulty to
extract information about method calls (b) The part of the program missing
in the incomplete program demonstrated in (a). We adapted this example from
work by Dagenais and Hendren [19, p.1-2].

called by looking at the string in the assignment in line 5. This inference is not
strictly correct: in this example, apparently, class A (Figure 3.1b) only has one
method named add with one parameter, A.add(Object); thus, the inference is
more specific than the one provided by syntactic analysis on the full program
consisting of classes A and B.

The specific challenges in applying program analysis techniques to code frag-
ments in our research are in Section 4.2.3 (obtaining the type of a method that
is called) and Section 6.3.4 (determining variable definition-use relationships
within a method).

3.1.2 Query Context Dependence

Is the problem query-based summarization or not? In text summarization,
researchers draw the distinction between generic summaries (without a query)
and query-based or task-specific summaries [66]. Examples of generic summaries
include the introductory paragraph of a news report and the abstract of a paper.
The rationale for query-based summarization is that code fragments usually
serve a purpose (for example, to illustrate a certain API usage scenario, bug
workaround, etc.). Moreover, developers often use code examples to obtain the
answer to a particular query. For these reasons, we formulated summarization
problems in this dissertation (Section 3.2) in relation to a query.
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3.1.3 Output Granularity

Granularity concerns the unit of code that is used to assemble the summary
output. Granularity is also used as an analysis unit in a summarization solution.

Choosing an appropriate granularity is important: a granularity that is
too fine (such as at the token level) unnecessarily increases the computational
complexity of a summarization algorithm. For machine learning based summa-
rization technologies that depend on training data, such as the one described
in Chapter 4, a granularity that is too fine requires significantly more effort
from human annotators in the construction of a summary oracle. Consequently,
this situation reduces the relative number of instances an annotator can anno-
tate. On the other hand, a granularity that is too coarse limits the ability of
the algorithm (or human annotator) to selectively choose regions of code as
important.

The granularity issue is also of importance in text summarization sys-
tems [76]. The granularity of these systems is seldom at the word level. Early
text summarization systems employed a sentence-level granularity [53]. Because
sentences can be long, later systems adopted a finer granularity that is based
on elementary discourse units [56], which are essentially clauses in text.

What are the points in the granularity dimension of the design space for
code fragment summarization?

Line: In the summarization case study in Chapter 4, we used line granularity.
The justifications at the time we conducted the case study were two-fold: First,
lines are the most common unit of code measurement and management, for
example, tools that identify differences in code, LOC measures, CVS, editors,
and debuggers work with lines. Second, since code fragments are written by
a human, the practice of separating a code statement into several lines has
significance in terms of comprehensibility of the code fragment. However, as we
found out from the case study, the line granularity does not result in sensible
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summaries, for example, when one of the lines from a multi-line statement was
selected for a summary.

Statement: In their work on code-to-text summarization [86], Sridhara et al.
defined the granularity at the statement level, as they focused on code within
a Java method.

Statement with Improvements: Statement granularity typically results in
similarly-sized code units. However, some statements in code can be long. Our
summarization study (Chapter 5) found that participants broke down long
statements into multiple units when making summarization decisions. We used
this insight to refine statement-level granularity, to define selection units which
are detailed in Section 6.2.1

3.1.4 Summary Composition

Current textual summarizers distinguish between two types of summaries:
Extractive summaries have content obtained solely from copying and pasting
whole sentences from the original document, whereas abstractive summaries
can contain text modified from the original document [53]. More specifically,
extractive summaries (extracts) are defined as follows [66, page 105]:

Extracts are produced by concatenating several sentences taken exactly
as they appear in the materials being summarized.

Here the definition assumes that the output granularity is sentences. Abstractive
summaries (abstracts) are defined as follows [66, page 105]:

Abstracts are written to convey the main information in the input and
may reuse phrases or clauses from it, but the summaries are overall
expressed in the words of the summary author.

1One may wonder about the relationship between the selection unit representation and an
intermediate representation (IR) in compiler optimization. Our selection units are designed
for human consumption, whereas an IR is designed to represent source code without loss of
information.
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Here the granularity is at the phrase or clause level. Applying these ideas to
code fragment summarization, we also make a distinction between abstractive
and extractive code fragment summarization:

Abstractive Code Fragment Summarization: In the abstractive code frag-
ment summaries that humans generated in the study described in Chapter 5,
we found all participants used modifications beyond changing white spaces:
namely, modification involving trimming a line, compressing a large amount
of code, and truncating code. Modifications associated with abstractive sum-
maries were present in 90% (47 out of 52) of the code fragments; thus, these
90% of the code fragments had at least one abstractive summary provided by
a participant. This catalog of modifications is the basis of Section 5.4. These
results demonstrate the need for abstractive summarization.

Extractive Code Fragment Summarization: In the code summarization
context, an extractive code fragment summary is a subset of code units selected
verbatim from the original code fragment. Selecting important parts of a code
fragment is the first step in any type of summarization system on source code.
The granularity can span from tokens, to code statements, and to high-level
code units. Beyond the benefit of being easier to implement, extractive code
fragment summaries can be beneficial. Research in the search engine domain has
shown that search engine textual summary snippet that contain exact phrases
from the web page are more effective summaries [97]. When summarizing a
code fragment, having the output also as a code fragment enables a larger
overlap with the original fragment compared to having the output as natural
language text.

3.1.5 Space Constraints

From the empirical study described in Chapter 5, we found that code summa-
rization is not only about the selection of code content (an area investigated
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by many researchers in other problems such as extracting or synthesizing code
examples) but also about the presentation of the content. While the need
for the presentation step corroborates findings from textual summary genera-
tion [76], one aspect of presentation found in code summarization but not in
textual summarization is formatting. In a textual summary, summary sentences
within a paragraph are given a one-dimensional total order and printed in a
two-dimensional textual display with line wrap. In a code summary, however,
selected code cannot be simply printed with line wrap because in code, format-
ting affects readability [10, 57]. One participant from the summarization study
said (Chapter 5):

I don’t like packing more stuff. I always want readability. That helps
me to in one glance to assess whether the particular code is helpful or
not. [...] If the code is packed, it’s pretty hard. It would go for another
example which has more clarity.

In fact, all of the sixteen participants from the summarization study employed
some formatting practices to the code. These results point to the need of a
two-dimensional formulation of the code summarization problem.

3.2 Problem Formulation

This dissertation focuses on query-based code fragment summarization. In
the first attempt at attacking the code fragment summarization problem (the
case study in Chapter 4), we used a simple formulation based on extracting
important code lines.

In this formulation, a code fragment summary is a line-based extractive
summary, which we defined as follows, based on the definition by Radev et al.
as we saw in the beginning of this chapter:

a code fragment shorter than the original one, where any line in the
summary is more informative (in the context of a specific query) than
any other line not in the summary.
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The selection of a code unit of a specific granularity can be formulated as a
supervised classification problem, whether to include a code unit in a summary
or not. Chapter 4 presents a case study on an approach to tackle this problem.

One lesson from the case study is that line granularity is not appropriate
for generating code fragment summaries because the line granularity does not
adequately captures atomic parts of a code construct, such as opening of a
code block and the closing of the code block. Together with the importance
on readability in a space constrained setting, we formulated a second summa-
rization problem that better captured what a summarization solution should
strive for:

Given as input a code fragment and a query (a set of keywords),
produce a shorter version of the fragment that fits in a two-dimensional
space (L lines by W columns) and that captures as much as possible
of the essential elements of the original code related to the query, while
remaining readable.

Integrating width into the summarization problem is further motivated by the
utility of narrower summaries, as demonstrated by a participant (P13) from
the empirical study in Chapter 5,

When it comes to horizontal space, like the onResume one [a method
declaration], when I have to pick onResume or onPause, I just pick one or
the other. If there is a way to put two columns, [I would put] onResume
on the left and onPause on the right.

The design, implementation, and evaluation of an optimization based approach
to generate summaries constrained by height and width are in Chapter 6.
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Chapter 4
Generating Line-Based Extractive

Summaries Using Machine Learning

This chapter describes a case study on one way to generate code fragment
summaries: a supervised machine learning approach that classifies whether a
line in a code fragment should be in a summary. In this formulation, a code
fragment summary is a line-based1) extractive2 summary, which we defined in
Chapter 3 as:

a code fragment shorter than the original one, where any line in the
summary is more informative (in the context of a specific query) than
any other line not in the summary.

We investigated whether features known to work well in text summarization
could be applied to the problem of code fragment summarization. These
techniques typically apply to sentences. The code fragment summarization
features include syntactic constructs in a code fragment, the amount of overlap
between tokens in the source code and query words, and features describing
API calls.

1See the output granularity design dimension in Section 3.1.3.
2See the summary composition dimension in Section 3.1.4.

37



Figure 4.1: A summary generated from a code fragment from the Eclipse
Official FAQ [23]. The code fragment shown here is reproduced with permission
under the Eclipse Public License.

Figure 4.2: Top Google result on the query “eclipse open editor outside eclipse”

We first illustrate code fragment summarization with a Java code fragment
that uses the Eclipse framework3 through its API (Application Programming
Interface). Figure 4.1 illustrates how to programmatically react to changes
in source files in Eclipse, the same code fragment Figure 4.2 attempted to
demonstrate.4 Figure 4.1 also demonstrates an extractive summary generated
using a machine learning algorithm. We consider this summary good because
it contains the same lines that human annotators would have selected. The
legend on the left hand side of Figure 4.1 indicates that at least two out of four
annotators selected those lines. The summary also illustrates the effectiveness of
the syntactic features: The summary contains an anonymous class declaration
and the method signature, demonstrating an important call-back mechanism
in the Eclipse API.

To generate summaries such as the one demonstrated in Figure 4.1, we
report on four research questions concerning the construction and evaluation
of the summary-line classifier:

3https://www.eclipse.org/
4The full code fragment is in Figure 4.1
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RQ 1 - Feature Investigation Experiments: In the summary line classifi-
cation problem, what is the effectiveness of using different combinations of
features (syntactic, query related, and API calls related) in generating the
summaries? We measured two aspects of classification effectiveness:

• Within-API: How well do the features perform when a summary-classifier
is trained on and applied to the same API?

• Cross-API: How well do the features perform when a summary-classifier
is trained on one API and tested on a different API?

With these two aspects in mind, we constructed two corpora of original-
summary pairs:

• We used the first corpus on the Eclipse API which was constructed by
four annotators and informed the design of the summarizer. The Eclipse
API corpus also served as training and evaluation data5 of the classifier
for both within- and cross-API.

• The second corpus on the Android API is for the cross-API question,
allowing us to determine how well the classifier trained on the first corpus
could generalize to another API.

We found that a selected set of AST features, combined with query-related
features, provided the best performance. Based on results using a classifier
trained within an API, the summaries had a average precision of 0.71 when we
allowed summaries to be of the same length as the oracle.

We describe the two corpora used in the experiments for the within- and
cross-API experiments in Section 4.1 and the features in Section 4.2. Section 4.3
presents the experimental settings and results on the effectiveness of different
combinations of the features.

5The training and evaluation use different subsets of the corpus.
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RQ 2 - Effectiveness Compared to Baselines: To interpret the 0.71 average
precision in RQ 1, we investigated whether the summaries with this level of
precision were better than some meaningful baselines. We found that the
summaries generated by the classifier we determined in RQ1 were better than
three baselines: a classifier that only depended on two query features that did
not require code parsing, and two classifiers that either selected the first-N
lines or the last-N lines as the summary. Section 4.4 describes the experimental
settings and the results.

RQ 3 - Annotator Comparison: How do the summaries we generate compare
to human-generated summaries? To further interpret the level of precision
reported, we computed the level of agreement among the summaries generated
by the four annotators, and determined whether using our automatically
generated summaries in place of an annotator’s summaries would degrade the
level of agreement. This analysis did not show a degradation in the agreement,
implying that our classifier for the summary-line classification problem took as
much advantage as it could from this data corpus. Section 4.5 describes the
experimental settings and the results.

RQ 4 - Overall Summary Quality: What is the quality of the overall
summary beyond the precision numbers? Section 4.6 reports on a qualitative
analysis and an experiment using a metric called pyramid precision which corre-
sponds better than precision in terms of the overall quality of the summary [67].

In the remainder of this chapter, we first describe the corpora (Section 4.1)
and the features (Section 4.2) used in the construction of the classifier. We
report on the experiments pertaining to the four research questions in Sec-
tions 4.3 to 4.6, respectively, and the lessons learned in Section 4.7. These
lessons, which subsequently informed and addressed in later parts of research,
constitute the first contribution of this dissertation. Part of this work appears
in a conference publication [100].
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4.1 Corpora

Section 4.1.1 describes the main corpus used in all the experiments for the four
research questions. This corpus contains code fragments that demonstrate the
API of the Eclipse framework, which developers can use to extend the IDE’s
functionality with plug-ins. Section 4.1.2 describes the secondary corpus which
is used in RQ1 for the cross-API experiments. The second corpus contains
code fragments that demonstrate the API of the Android mobile platform.

4.1.1 Main Corpus: Eclipse Original-Summary Pairs

We extracted 70 code fragments from the official Eclipse FAQ website [23].
We defined the query as the question in the FAQ entry. For these 70 code
fragments, four human annotators generated extractive summaries by selecting
lines deemed important in a summary. Figure 4.3 shows a web-based tool we
developed for this annotation task. We instructed the annotators to generate
summaries averaged to three lines, with a maximum of six lines. We set aside
17 original-summary pairs as the development set for feature construction
purposes. The remaining 53 code fragments were in the evaluation set.
Figure 4.4a shows the distribution of the number of code fragments with
different number of lines.

The Eclipse corpus consists of 70 code fragments produced from the 190 code
fragment candidates in the Eclipse FAQ. For our corpus, we only considered
those candidates that were in Java, longer than four lines, and were meant to
completely answer the question. Fifty-three code fragments came from FAQ
answers with only one code fragment candidate. The other 17 were extracted
from the rest of the answers containing more than one code fragment candidate;
this extraction involved manual inspection, either combining the code fragments
for the same question (when the fragments in the answer were meant to be a
single example but were separated because of interleaving text) or treating each
fragment for the same question as separate (when each fragment was meant to
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Figure 4.3: Annotation tool demonstrating a summarization task on a code
fragment from the Eclipse Official FAQ [23]. The code fragment is reproduced
with permission under the Eclipse Public License.
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Figure 4.4: Basic statistics of the two corpora of original-summary pairs

be an alternative solution to the question). We reserved these 17 compound
code fragments as the development set. The choice of the 17 code fragments was
due to the fact that we had to manually inspect them, disqualifying them for
the use in the evaluation set meant to be unseen until the end of the research
to avoid contaminating the models learned from the data with investigator
biases.

Figure 4.4b shows the distribution of the length of the summaries generated
by the four annotators, Eclipse A1 to A4. The Fleiss’ Kappa agreement statistic
of the four annotators is 0.487 [44]. This statistic assesses how far away the
observed agreement among multiple annotators is from the agreement if the
annotators were to mark the summary lines randomly. A kappa of 0 indicates
random markings and a Kappa of 1 indicates perfect agreement. A Kappa
value between 0.4-0.6 is considered a moderate agreement [44]. However, since
the goal of this annotation task is to elicit what a summary entails, and our
annotation instructions allowed an annotator to judge what should be in the
summary while not specifying its exact properties, the Kappa value of the
four annotators is appropriate considering our task. This level of agreement
reassures us that a summary code fragment is not a random set of lines.

To train and evaluate the summarizer, we constructed gold standard
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Figure 4.5: Summarization factor

summaries consisting of lines where two or more annotators agree on the in-
summary annotations because the annotator task’s subjectivity. The “Eclipse
Gold” column in Figure 4.4b shows the distribution of the length of the gold
standard summaries. On average, the size of a summary in the gold standard
was 33.5% of the original code fragment (the right-most box-plot in Figure 4.5).

4.1.2 Secondary Corpus for Cross-API Experiments: An-
droid Original-Summary Pairs

To explore whether the classifier could generalize to a different data set, we
trained the classifier on the Eclipse summaries and applied it to a second corpus
consisting of Android code fragments. This corpus consists of code fragments
extracted from a technical book that demonstrates the development for the
Android operating system for mobile devices [9]. We defined the query of
a code fragment as the listing caption. For the summaries, we leveraged
the author’s use of bold formatting style, intended to highlight certain code
fragment lines. We did not need to consolidate multiple versions of summaries
in the oracle when evaluating the quality of the predicted summaries for the
Android fragments. In total, 22 original-summary pairs were selected for the
corpus as follows.
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For the Android corpus, we employed the following procedure to system-
atically choose the code fragments whose bold lines were summaries. The
book contains 146 listings of code fragments with bold formatting, 41 of which
were in Java. We eliminated four code fragments that were duplicates, leaving
us with 37 fragment-summary pairs. To ensure the bold lines indeed form
summaries as in the Eclipse data set, we manually inspected the bold lines from
the 37 fragments. We found two conceptual differences between the Eclipse
gold standard summaries and the summaries derived from bold lines in the
Android corpus:

1. Thirteen out of the 37 fragments contain a bold line with only a curly
brace. None of the Eclipse gold standard summaries contain such single-
brace lines; in fact, none of the annotators marked any of these lines. The
sole purpose for including a single-brace line in a summary is to match
the brace. However, in line-based extractive summarization, it is obvious
that a single-brace line never conveys more useful information than other
lines in the code fragments. To make the Android corpus more similar to
the Eclipse one, we excluded the single-brace bold lines as part of the
oracle summaries in the Android corpus.

2. A significant number of Android fragments contain a “large chunk” of
bold lines, either a whole method declaration (7 out of 37) and/or more
than five consecutive lines (13 out of 37). Out of the 37 code fragments,
13 (35%) of the code fragments have fewer than 3 consecutive bold lines,
11 (30%) have between 3 and 5 consecutive lines, and 13 (35%) have
more than 5 consecutive lines, whereas for the Eclipse data set, the
ratios are 71%, 27%, and 1%. None of the 70 Eclipse gold standard
summaries contain whole method declarations and only one contains
more than five consecutive lines. We speculate that such cases with a
“large chunk” of bold lines were intended for the author to refer to in
the text rather than to summarize the code fragment. We eliminated
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these original-summaries pairs in our experiments, leaving us with 22
code fragments in the Android corpus.

The length of the Android fragments in the final corpus was on average longer
than the Eclipse fragments (Figure 4.4a). Figure 4.4b shows that if we treat
the bold lines as summaries, the Android data contains longer summaries than
the Eclipse data. Using the bold lines directly as a representation of a unique
summary, on average, the size of a summary in the Android oracle was 21.6%
of the original code fragment (the Android box-plot in Figure 4.5).

The Android data provided a generalizability challenge to the classifier
developed and trained on the Eclipse FAQ. First, the code fragments demon-
strate two different APIs. Second, the book author obviously did not use our
annotation instruction to generate the bold lines, as our annotators for the
Eclipse FAQ oracle did.

4.2 Features

The generation of extractive summaries in the textual domain is well established.
There are several parallels between summarizing text and code fragments that
researchers attempting to summarize source code can exploit. The selection of
code lines can be formulated as a supervised classification problem, of whether
to include a code line in a summary. Almost all automatic single-document text
summarization algorithms for generating extractive summaries use features of
the text to give a score to a sentence, for classifying whether it should be in a
summary or not [33]. Many algorithms focus on query-based summaries, e.g., for
the search result snippets. There are four types of sentence-independent features
that have shown success in single-document summarization, as catalogued in a
text summarization survey [33]: cue phrase indicators (such as “in this paper
we show”) [91]; query overlap criteria (sentences with more overlap with the
query tend to be important) [43]; word frequency criteria (if words appear
unusually frequently in a piece of text, sentences containing these words tend
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to be important) [51]; and positional criteria (topic and concluding sentences
are likely candidates of important summary sentences) [43]. The first three
types of features from text summarization naturally map to the source code
domain:

• Code Syntactic Features: One way to think of cue phrases in the context
of the source code is that syntactic structures are more likely to associate
with important lines in a summary. An abstract syntax tree (AST) is
a programming language dependent representation that captures the
syntactic structure of a program.6

• Query Features: To exploit the query, we designed features that compute
the amount of overlap between identifiers in the source code and words
in the query.

• Call Frequency Features: The frequency criteria exploiting unusual words
can be mapped to features exploiting unusual (infrequent) method calls.

The positional criterion, which takes advantage of topic and concluding
sentences in text, does not apply to code fragments because code fragments
are an arbitrary fragment of code without necessarily the enclosing structure
such as the compilation unit. We confirmed this intuition after experimenting
in the development set (described in Section 4.1.1). For this reason we did not
further investigate positional features.

We investigated which set of AST, query, and call frequency features was
the best at selecting summary lines. We used Support Vector Machines (SVM)
to combine the features into a classifier. In Section 4.4, we present a comparison
of an SVM classifier and a Naive Bayes classifier.

4.2.1 AST Features

We observed from the summaries in the development set that when a line
contains a certain type of syntactic constructs, the line is more likely to be in

6The AST features are binary variables depending on whether a line exhibits a feature.
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a summary. For example, a line containing an anonymous class declaration
and instantiation tended to be in a summary in the oracle, whereas a line
containing an if conditional expression tended not to be in a summary.

AST features take into account the syntactic structure of the code fragment.
All AST features are discrete variables, with a binary value depending on
whether a line exhibits a feature. We divided the 56 features into the following
eleven groups:

Group 1 - Method Invocations (2 features): These two features indicate
whether a line contains a part of a method invocation (methodInvocation) or
contains more specifically the name of the method invocation (methodInvocation-

Name). Distinguishing the two features is useful to capture a method invocation
that spans multiple lines.

Group 2 - Methods and Signatures (5 features): The methodDeclaration fea-
ture indicates whether a line contains any part of a method declaration. Four
remaining features capture various aspects of a method signature: methodDecla-

rationName indicates whether a line contains the name of the method declaration
(as opposed to the body of the method declaration); methodIsPublic, methodIsPro-

tected, and methodIsPrivate indicate whether a line contains a method signature
declared public, protected, or private, respectively. For default visibility, the
three features methodIsPublic, methodIsProtected, and methodIsPrivate all have the
value false.

Group 3 - Field Declarations (3 features): The fieldDeclaration feature indicates
whether a line contains any part of a field declaration, while fieldDeclarationType

specifically indicates whether a line contains the type, and fieldDeclarationName

indicates whether a line contains the name.

Group 4 - Control Flow Constructs (11 features): The ifBlock, elseBlock,
forBlock, and whileBlock7 features indicate whether a line contains any part of
the block in an if, for, or while statement, while ifConditional, forConditional, and

7We mistakenly did not include do...while loops. We corrected this over-sight in Konaila’s
control flow salience filter (Section 6.3.3).
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whileConditional only capture the conditional expression, and ifKeyword, elseKeyword,
forKeyword, and whileKeyword only capture the keyword.

Group 5 - Return Statements (3 features): returnStatementSimple indicates
whether a return statement returns a variable, boolean value, or null, while
returnStatementNothing is for void return statements and returnStatement is for any
return values.8

Group 6 - Variable Declarations (4 features): variableDeclaration, variableDeclara-
tionName, and variableDeclarationType apply to any variable declaration, indicating
whether a line contains any part of a variable declaration. The primitiveDeclaration

feature applies to declaration of a variable of a primitive type.

Group 7 - Types and Signatures (12 features): Four features apply to the
whole type (typeIsPublic, typeIsProtected, and typeIsPrivate). For package visibility,
the three features typeIsPublic, typeIsProtected, and typeIsPrivate all have the value
false. superClassType indicates whether a line contains any part of a class with
a declared super-class. Eight of the features indicate whether a line contains
various keywords in the class signature: implementsKeyword, extendsKeyword, classKey-
word, interfaceKeyword, typePublicKeyword, typeProtectedKeyword, typePrivateKeyword, and
typeDeclarationName.

Group 8 - Anonymous Classes (3 features): anonymousClassDeclaration indicates
whether a line contains any part of an anonymous class declaration, while
anonymousClassSuperTypeName more specifically captures the signature. methodIn-

vocationOnAnonymous indicates whether a line contains a call with at least one
argument that is an anonymous class creation.

Group 9 - Comments (3 features): These features (javaDocComment, blockCom-

ment, and lineComment) indicate whether a line contains a part of the three types
of comments.

Group 10 - Exception Handling (7 features): Three features capture lines in
exception blocks (tryBlock, catchBlock, and finallyBlock), while three others capture

8returnStatement is a super-set of returnSimple.
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the keywords (tryKeyword, catchKeyword, and finallyKeyword). Finally, thrownExcep-
tionDeclaration captures the throws clause in a method signature.

Group 11 - Other (2 features): The importKeyword and assignment features
indicate whether a line contains an import statement or an assignment, respec-
tively.

Generating these features required constructing an AST of a code fragment.
Building an AST for incomplete programs such as a code fragment poses a
challenge for many popular parsers, such as the Eclipse Java Development
Toolkit parser we used. In our corpus, only fewer than 10% of the fragments
form full compilation units. In addition, the Eclipse parser is not able to
construct an AST when a code fragment contains invalid constructs such as
“...”, a common convention to indicate a part of the code not worth showing.
To solve the first problem, we built ASTs for multiple scenarios: the code
fragment as it is, the code fragment put in an empty Java compilation unit
stub, and the code fragment put in an empty method declaration stub in a
Java class, and measured which scenario resulted in the most complete AST.
In this context, an AST is more complete than another when there are more
code constructs (e.g., method invocations, method declarations, exception
blocks, and conditional statements) that were recognized by the parser. We
also engineered the algorithm to remove invalid Java tokens such as “...”. With
this algorithm, we were able to parse the code fragments and constructed
corresponding ASTs for over 90% of the fragments. However, this result is not
necessarily generalizable to code fragments extracted from arbitrary web pages,
as we might not have exhaustively considered all possible invalid Java constructs
that exist in any code fragments on the web. In the second summarization
system we built, Konaila, we took a different approach in parsing, by specifying
precisely the code fragments Konaila accepts (Section 6.2.1).

Because of the relatively large number of the AST features, we performed a
Multiple Correspondence Analysis (MCA) to see whether the features were as-
sociated with each other. MCA applies to categorical features and is considered
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the counter-part of Principle Component Analysis for categorical data. Intu-
itively, MCA projects the data from the original feature space (AST features
in our case) to a lower dimensional space that maximizes the variance of the
data. If a small number of dimensions capture close to 100% of the variance
of the data, then many of the AST features are associated with each other,
and the summary classification problem can benefit from a classifier using the
smaller set of MCA dimensions rather than the full feature set. For this MCA
analysis, we used the “mca” function from the MASS package in R.9 MCA
revealed that using one dimension captured 9.59% of the variance, whereas
two dimensions captured 17.8% cumulatively and 24.5% for three10 dimensions.
We did not consider this level of variance sufficiently high to conclude that the
summary classification problem could benefit from a classifier using the MCA
dimensions.

Instead, we turned to an ablation study to find out which features were
more important to the summary-line classification problem. In the ablation
study we ran the classifier multiple times, each time leaving out one single
feature. Figure 4.6 shows the prediction precision of each of the leave-one-
feature-out run, indicating the relative strength of the features. The more
a feature degraded R-precision when left out, the better it is. The solid
vertical line indicates the prediction precision when all the 56 AST features
were used in the classifier. Six features were obviously poor features whose
existence degraded the performance of the classifier: ifConditional, ifKeyword,
anonymousClassSuperTypeName, anonymousClassDeclaration, thrownExceptionDeclaration,
and assignment. This analysis also showed that 13 features, when removing each
one, did not degrade the performance: methodIsPrivate, fieldDeclarationName, ifBlock,
returnStatementSimple, all the four features in the variable declarations group,
extendsKeyword, classKeyword, typePublicKeyword, typeDeclarationName, and catchBlock.

9https://cran.r-project.org/web/packages/MASS/index.html
10Figure 4.7 plots the percentage of variance for each successive MCA dimension added to

the projected space. The percentage of variance reduced abruptly when adding the fourth
dimension. Hence we chose to stop the analysis at three dimensions.
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The results of the ablation study raised the following more specific research
questions when investigating the combination of features for RQ 1:

RQ 1.1: Would a more compact AST feature set (called ASTCompact) perform
better than the full set (called ASTAll)? We defined the compact set to only
consist of those features that degraded the performance (the features strictly
left of the “All Features” line in Figure 4.6) from the leave-one-feature-out
analysis.

RQ 1.2: Would a set larger than ASTCompact (called ASTReduced) perform
better than ASTAll? We defined ASTReduced as the set of features that did not
increase performance when left out (the features on or left of the “All Features”
line in Figure 4.6).

RQ 1.3: What is the contribution of AST features (either ASTAll , ASTCompact,
or ASTReduced) to the overall classification performance?

4.2.2 Query-related Features

We also observed that annotators are more likely to include in the summary the
lines containing the terms from the query. Analogous to the syntactic features,
query related features are discrete variables, with a binary value depending on
whether a line contains a feature. We constructed four query-related features.
Two features (methodInvocationNameContainsQuery and variableDeclarationNameContains-

Query) that indicate whether an identifier (method invocation or variable name
respectively) in a code fragment contains a query term or not, defined as follows.
We constructed two additional features that looked beyond just individual lines:
mostTerms is true when a line contains the most number of matching terms
among all the lines in the same code fragment. mostDiverseTerms is analogous
except it indicates the most number of distinct terms. When computing the
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terms, we split the identifiers according to the common camel case identifier
naming convention.11 The research question we were interested in was,

RQ 1.4: How much do the four query features (denoted as Query) contribute
to the prediction performance?

4.2.3 Call Frequency Features

Inspired by the success of the frequency criteria in text summarization that
gives more weight to sentences with more unusual words, we wanted to see if
the same idea could be applied to method calls: Were unusual methods in a
code fragment more important for a summary?

One technical challenge in generating these features was to qualify the
method calls in a code fragment correctly, because resolved fully-qualified type
references to program elements, called type bindings, are seldom available
in code fragments. Fully qualified names include the project and package
information to help unambiguously identify type references (see Section 3.1.1).
To find these missing type bindings, we used Partial Program Analysis (PPA), a
technique for resolving such bindings [19]. Because PPA was designed to be used
with entire files retrieved from code repositories, PPA requires programs with
proper import statements. We used the Eclipse “Organize Import” facility12 to
attempt to infer import statements.

We explored three features that characterize method calls:

API calls: API calls that are rarely called in general but called in a
given code fragment tend to be important. For example, the API method
PlatformUI.getWorkbench() is commonly used by programmers in general
whereas IWorkbench.getHelpSystem() is rarely used. To account for this insight,

11For example, for the identifier “getCodeWords”, the algorithm produces three terms
“get”, “code”, and “word” while for “ASTVisitor” it produces the terms “ast” and “visitor”.

12http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.jdt.
doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2Fui%2Factions%
2FOrganizeImportsAction.html
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we created a feature that counted the number of times the method is being
used universally, if a code line contains a call to an API method call. To
capture this notion, we needed a large sample code corpus and analyze its
method call frequencies statically. We compiled such a corpus from the three
largest official Eclipse CVS repositories: Eclipse platform13 (188 KLOC in
Java), Eclipse technology14 (217 KLOC), and Mylyn15 (112 KLOC), retrieved
on July 2012. We generated a feature called DfPackage (with “Df” inspired
by the word document frequency) by counting how many times another
Java package in the sample code corpus calls a method contained in a line.
We discretized the count into three values: rare, common, and in_between.
The thresholds for these categories were determined in the development set.
Determining a parameter value in the development set (Section 4.1.1) and
using the same parameter value in the evaluation set is a standard practice in
machine learning experiments [55, p.262]. The thresholds determined were
above 150 for common and less than or equals to 50 for rare.

Local calls: We defined a feature called DeclaredInCode that is true if a line
contains a method call whose method declaration is in the code fragment.

Java calls: We defined a feature called Java to indicate whether a line contains
a call to the Java standard library JDK. This computation is a static analysis.
In the presence of dynamic dispatch, we can only infer that the call is to a
Java standard library JDK assuming the run-time type of the object matches
its statically-declared type. (Section 3.1.1).

The research question we were interested was,

RQ 1.5: How much do the CallFreq features (DfPackage, DeclaredInCode, and Java)
contribute to the performance?

13at CVS location “:pserver:anonymous@dev.eclipse.org:/cvsroot/eclipse”
14at CVS location “:pserver:anonymous@dev.eclipse.org:/cvsroot/technology”
15at CVS location “:pserver:anonymous@dev.eclipse.org:/cvsroot/mylyn”
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4.3 Feature Investigation Results

For RQs 1.1-1.5, the performance results in this section were computed using a
leave-one-out cross validation. In each cross validation fold which corresponded
to a code fragment in the corpus, a summary was generated by a classifier.
For each fold, we calculated R-precision, which is described below. The final
result of the cross validation was the average of all the folds. Using a leave-
one-out cross validation set-up maximized the use of the original-summary
pairs for training the classifier, compared with the commonly used 10-fold cross
validation.

4.3.1 Cross-Validation Settings

For the within-API results, we used the Eclipse corpus. To maximize the
training data, we adopted a common practice in machine learning where we
trained the summary-classifier on both the development (17 original-summary
pairs) and the evaluation sets (53 pairs). As a result, the cross validation
consisted of 53 folds, each fold yielded a prediction for one summary trained
on 69 gold standard summaries (17 from the development set, plus 53 minus
1 from the evaluation set). This set-up made the most out of our training
data but did not threaten classifier over-fitting because all the predictions still
applied to the code fragments in the unseen evaluation set. For each fold (one
code fragment), we used the gold standard summaries (Section 4.1) as the
ground truth in the evaluation of the generated summaries. For the cross-API
results, the training data was the Eclipse corpus while the test data was the
Android corpus. More specifically, we trained the classifier on all 70 summaries
in the Eclipse oracle. We then computed the performance metric on the 22
code fragments from the Android corpus.
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4.3.2 Metric: R-Precision

To evaluate how well a generated summary resembles a summary in the oracle,
we compared the two using R-precision, an evaluation metric from the field
of information retrieval [55]. R-precision is similar to precision-at-k, a more
familiar precision metric for summaries of length k. Precision-at-k determines
out of the top k lines predicted by our classifier (predictedk), how many
are correct (|oracle ∩ predictedk|). R-precision differs from precision-at-k by
allowing summaries of variable lengths. The R-precision of a code fragment
evaluates the top R lines returned by our classifier (predictedR), where R is
the length of the summary oracle. More formally, R-precision is given by
|oracle∩predictedR|
|predictedR|

. R-precision is more stable than precision-at-k, which is highly
dependent on the total number of lines marked in the oracle. For example, in
the Android book oracle, summaries can be as long as 12 lines (Figure 4.4b). In
such cases, pre-defining generated summaries at three lines can never achieve
perfect recall even for a perfect classifier.

4.3.3 Results

Answering the five research questions required comparing various combinations
of the features. The comparison was determined by evaluating two aspects of the
classification performance: within-API in which R-precision was calculated
using the classifier trained and tested on the Eclipse corpus, and cross-API
in which R-precision was calculated using the classifier trained on the Eclipse
corpus, and tested on the Android corpus. Figure 4.8 summarizes the results
comparing the AST feature sets (RQs 1.1-1.3). Figure 4.9 summarizes the
results for the query feature set (RQ 1.4) and Figure 4.10 for the call frequency
feature set (RQ 1.5).

Given the differences in the two corpora, we expected the average R-precision
on the Android corpus to be significantly lower for two reasons. First, the
generation of oracle of summaries from the Android book corpus and the
Eclipse FAQ corpus were different (retaining bold lines marked by the authors
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Figure 4.8: Comparing the AST feature sets. The statistically sig-
nificant results for within-API were as follows: ASTReduced+Query (R-
precision=0.714) > ASTCompact+Query (0.660), ASTReduced+Query+CallFreq
(0.729) > ASTCompact+Query+CallFreq (0.652), ASTReduced+Query+CallFreq
(0.729) > ASTAll+Query+CallFreq (0.694). For cross-API, the only statistical
significant result was ASTCompact+Query (0.498) > ASTReduced+Query.

versus explicitly instructing annotators to provide summaries). Second, the
nature of the code fragments was different: the code fragments in the Eclipse
corpus were intended to answer FAQs and the code fragments in the Android
corpus may not necessarily have been intended to answer a specific question.
Degradation in performance when generalizing a classifier is inherent to any
machine learning approach.

Results on AST Features (RQs 1.1-1.3)

Figure 4.8 presents an overview on the results for RQs 1.1-1.3 on the contribution
of different AST sets (ASTCompact, ASTReduced , ASTAll in Section 4.2.1) to
the prediction performance. The results for the within-API experiments are
marked with bars with strips, and the results for the cross-API experiments
are marked with bars without strips.

Research questions 1.1 and 1.2 concerned how the AST features performed
without combining with the Query nor CallFreq features: whether the ASTCom-

pact set (bars with the darkest shade) performed better than ASTAll (bars with
the lightest shade), and whether ASTReduced (medium shade) performed better
than ASTAll . The results relevant to these two questions were the group of bars
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marked as “AST alone” in Figure 4.8. The R-precision of the three AST sets
alone were not statistically significantly different from one another:

• For within-API predictions (bars with strips), the R-precision of each of
the three sets (ASTCompact, ASTReduced , and ASTAll) was 0.558, 0.575,
0.560, respectively. Wilcoxon signed rank tests showed that there were
neither a statistically significant difference between ASTCompact and
ASTAll nor between ASTReduced and ASTAll .

• Similarly, for cross-API predictions (bars without strips), the average
R-precision numbers of the three sets were 0.403, 0.372, 0.377, respec-
tively. There was neither a statistically significant difference between
ASTCompact and ASTAll nor between ASTReduced and ASTAll .

Research question 1.3 concerned how the AST features performed in com-
bination with Query and/or CallFreq. The results relevant to this question are
in the group of bars marked as “AST with Query” and the group marked as
“AST with Query+CallFreq” in Figure 4.8. When combined with the query
features (either with Query or Query+CallFreq features), ASTReduced performed
the best overall for within-API predictions, while ASTCompact performed the
best for cross-API predictions:

• For within-API predictions, when combined with Query (the “AST alone”
group of bars), ASTReduced ’s average R-precision (0.714) was statistically
significantly better than ASTCompact’s (0.660), with p = 0.0105, al-
though ASTReduced ’s R-precision was not statistically significantly better
than ASTAll ’s (0.702). When combined with Query+CallFreq, ASTReduced

(0.729) was statistically significantly better than ASTCompact (0.652) with
p = 0.00972, as well as ASTAll (0.694) with p = 0.0489.

• For cross-API predictions, when combined with Query, ASTCompact’s
average R-precision (0.498) was statistically significantly better than
ASTReduced ’s (0.458), although not statistically significantly different
from ASTAll ’s (0.462). When combined with Query+CallFreq, the average
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R-precision numbers of ASTCompact, ASTReduced , and ASTAll (0.471,
0.458, and 0.458 respectively) were not statistically significantly different
from one another.

When combined with CallFreq (“AST with CallFreq”), the average
R-precision numbers of the three AST sets were not statistically significantly
different from one another. This is the case for both within-API predictions
(the average R-precision numbers for ASTCompact, ASTReduced , and ASTAll

were 0.557, 0.572, 0.564, respectively) and cross-API predictions (the average
R-precision numbers for the three sets were 0.421, 0.384, 0.389 respectively).
The pair-wise differences among the three sets were not statistically significant.

Overall, the cross-API results on the Android corpus were in the range of
0.3-0.5. We argue that this level of precision was acceptable given the challenge
in cross-corpus predictions. A random classifier would generate summaries of
R-precision of 0.216, the summarization factor (the average percentage of lines
from the code fragments that are in a summary) for the Android book corpus
(Figure 4.5).

Results on Query (RQ 1.4)

For understanding the contribution of the Query set to the performance of the
summary-line classification problem, we report on different combinations of the
feature sets. For the AST features, we employed ASTReduced following from
the results from RQs 1.1-1.3.

With just Query alone, the average R-precision was 0.540 for within-API
predictions and 0.341 for cross-API. Figure 4.9 presents the results on the
performance contribution of Query. Adding the Query feature set (bars with
a lighter shade) consistently increased the average R-precision compared with
the ones without Query (bars with a darker shade) in all six settings:16

16The six settings account to the three combinations with ASTReduced and/or CallFreq,
each combination with two settings, within- and cross-API.
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Figure 4.9: Six comparisons on the contribution of the Query feature set to
prediction performance measured in average R-precision. From the leftmost
bars to the right, the six pairs of average R-precision without Query and with
Query are (0.575, 0.714), (0.372, 0.458), (0.538, 0.570), (0.073, 0.344),
(0.572, 0.694), (0.384, 0.458). The pairs in bold had statistically significant
differences.

• For the within-API predictions (bars with strips), adding the Query

features set resulted in two statistically significant increases. When
combining with ASTReduced , Query increased the average R-precision
from 0.575 to 0.714 (p = 0.00124), and when combining with ASTRe-

duced+CallFreq, Query increased the average R-precision from from 0.572
to 0.694 (p = 0.00247). However, the performance increase of Query

when combined with CallFreq (from 0.538 to 0.570) was not statistically
significant.

• For the cross-API predictions (bars without strips), adding Query resulted
in one statistically significant increase, when combining with CallFreq. The
increase was from 0.073 to 0.344 (p = 0.00142). This result constrasts with
the result in the experiment comparing the AST feature sets (Figure 4.8)
in which CallFreq did not increase the prediction performance. We suspect
that there is an overlap between CallFreq and a subset of the AST features
(i.e., method invocation features); therefore, adding CallFreq to Query was
fruitful but only without the AST features.
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ASTReduced Query ASTReduced+Query
0.0

0.2

0.4

0.6

0.8
R

-P
re

c
is

io
n

Within-API Within-
API

Cross-API Cross-
API

No CallFreq

CallFreq

-------------

No CallFreq

CallFreq

Figure 4.10: Six comparisons on the contribution of the CallFreq feature set to
the prediction performance measured in R-precision. From left to right, the six
pairs of R-precision without CallFreq and with CallFreq are (0.575, 0.572), (0.372,
0.384), (0.540, 0.570), (0.341, 0.344), (0.714, 0.694), (0.458, 0.458). None of
the pairs were statistically significantly different.

Results on Call Frequency Features (RQ 1.5)

The average R-precision of the CallFreq feature set alone was 0.538 and only 0.073
for cross-API predictions. As for the results on the performance contribution
of the CallFreq feature set, (Figure 4.10), CallFreq (bars with a lighter shade)
did not contribute significantly to the classification performance.

• For the within-API results, CallFreq increased the average R-precision in
one case, when combining with Query (from 0.540 to 0.570). However,
CallFreq degraded the average R-precision when combining with ASTRe-

duced+Query (from 0.714 to 0.694) and when combining with ASTReduced

(from 0.575 to 0.572). Wilcoxon tests showed that these changes were
not statistically significant.

• For the cross-API results, CallFreq increased the average R-precision also
in one case when combining with ASTReduced (from 0.540 to 0.570),
while CallFreq did not practically change the R-precision in the two other
combinations. Wilcoxon tests showed that these changes were again not
statistically significant.
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Summary of the Feature Investigation Experiment

The conclusion from RQs 1.1-1.3 was that feature selection paid off both for
the within-API and cross-API predictions. The ASTReduced set was a clear
winner for within-predictions, while there was some evidence that ASTCompact

generalized better than ASTReduced . This result indicates that the full AST
set was over-fitting. The implication is that the features in ASTCompact, which
was also a subset of the ASTReduced , were the most crucial in the construction
of a generalizable summary classifier. These ASTCompact features covered
ten of the eleven groups of AST constructs (Figure 4.6): method invocations,
methods and signatures, field declarations, control flow constructs, return
statements, types and signatures, anonymous classes, comments, exception
handling, and import statements. On the other hand, variable declarations
and statements containing assignments were less crucial in the construction of
a generalizable summary classifier. For RQs 1.4 and 1.5, the conclusion was
that the Query features were crucial in the classification performance, while the
CallFreq features were not.

Given these results, for the rest of the experiments in this chapter (unless
indicated otherwise), the classifier we employed consist of a combination of
the ASTReduced and Query feature sets. Table 4.1 presents the time it took
to generate these features. The machine used to generate the features had a
64-bit Intel Duo Core 3.33GHz processor with 7.7G of memory. On average,
generating these features for a code fragment took 0.09 second, making it
possible to deploy in a real application setting.

4.4 Effectiveness Experiment

For RQ 2, we compared the SVM classifier constructed with the best feature
set, ASTReduced+Query, against three baselines:

• the first-N-lines classifier which constructs a summary of length N by
selecting the first N lines of a code fragment,
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Table 4.1: Running time for feature generation

Running time
#

code frags
#

lines total
per

code frag
per
line

Eclipse dev 17 225 1.6 s 0.09 s 7 ms
Eclipse eval 50 602 3.8 s 0.07 s 6 ms
Android 23 641 2.4 s 0.10 s 4 ms

90 1468 7.8 s 0.09 s 5 ms

• the last-N-lines classifier which selects the last N lines,

• and the SVM-query-only classifier that uses the two query features (most-
Terms and mostDiverse) that do not require any AST construction.

We also experimented with a Naive Bayes classifier (NB) using the ASTRe-

duced+Query feature set. In this experiment, we focused on the within-API
setting (Section 4.3.1) on the Eclipse corpus (Section 4.1.1).

Metrics

We conducted the performance comparison through a receiver operator charac-
teristic (ROC) curve. An ROC curve depicts the trade-off between the true
positive rate and false positive rate as we varied N from one line to four lines.
This curve enables us to understand explicitly the performance trade-off among
different summary lengths. The coordinate of a point on the curve is given
by the average true positive rate (average of each of the true positive rate per
code fragment) and average false positive rate (average of each of the false
positive rate per code fragment). The true positive rate of a code fragment c is
given by:

|{lines in gold st. summary of c} ∩ {lines in gen. summary of c}|
|{lines in gold st. summary of c}|
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Figure 4.11: ROC curves

The false positive rate of a code fragment c is given by:

|{lines in c not in gold st. summary} ∩ {lines in gen. summary of c}|
|{lines in c not in gold st. summary}|

Averaging the rates per code fragment (rather than for all lines) aligns better
with the actual task of providing a summary for a code fragment (rather than
being just an exercise of predicting summary-membership of lines). The closer
the ROC curve is to the upper left corner (with fewer false positives and more
true positives), the better the classifier. The area under the curve sums up
this intuition: the better the classifier, the closer its area under a ROC curve
is to 1.

Results

Figure 4.11 shows five ROC curves: two versions of our classifier (SVM and NB,
the two thicker lines) and three baselines (SVM-query-only, first-N-lines, and
last-N-lines, the three thinner lines). Our two classifiers have area under the
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Figure 4.12: Agreement result

curve of 0.806 for SVM and 0.772 for NB. Both clearly lie above the first-N-lines
baseline (the area under the curve is 0.493) and last-N-lines baseline (the area
under the curve is 0.503). In addition, the two classifiers using both syntactic
and query features out-perform the baseline using only query-related features,
SVM-query-only, whose area under the curve is 0.629. The conclusion is that it
is feasible to generate effective code fragments summaries using only syntactic
and query-related features that are better than the baselines.

4.5 Generated Vs. Annotators’ Summaries

To better interpret the level of precision reported, in RQ 3, we compared
our automatically generated summaries with summaries constructed by the
annotators. As in RQ 2, we based the results on this experiment on the within-
API setting (Section 4.3.1) on the Eclipse corpus (Section 4.1.1). Figure 4.12
illustrates the Kappa agreement of the four annotators (kappa=0.487) and
how the agreement changed when we left out the summaries provided by each
one of the annotators and replaced the summaries of the left-out annotator
with summaries generated by the classifier. In one case (A3), swapping in
the generated summaries even improved the agreement, whereas in two cases
the agreement decreased slightly and in the third case decreased more. The
average of the four kappa statistics of the three-annotators-plus-our-classifier
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settings was 0.484, almost the same as the agreement of the four annotators.
The automatically generated summaries were as similar to human-generated
summaries as summaries generated by different humans to each other.

4.6 Overall Quality

R-precision evaluates how many of the predicted lines matched the lines in the
oracle summaries. However, the quality of a summary is not only affected by
the number of correctly predicted lines, but also the quality of the summary
as a whole, such as cohesion of the summary. For evaluating the summaries
qualitatively, we wanted to specifically look for cohesion problems. All the
features described in this chapter were not designed to handle cohesion. To
gain a better understanding on what type of cohesion problems that could
arise, we performed a qualitative analysis on the summaries (Section 4.6.1).

To evaluate beyond individual lines, we also experimented with the use
of a metric called pyramid precision. Intuitively, R-precision weighs all the
predicted lines equally, whereas pyramid precision puts more weight on lines
selected by more annotators. Text summarization experiments have shown
that pyramid precision corresponds better than precision in terms of the overall
quality of the summary, when a human is asked to compare the overall quality
of two summaries [67]. We report on a comparison of the pyramid precision
results with the R-precision results in Section 4.6.2.

4.6.1 Qualitative Analysis

We present some insights into the quality of each summary as a whole through a
qualitative analysis. Because judging the quality is a difficult task, we evaluated
the summaries by comparing pairs of summaries of two settings: AST+Query

and a baseline of only using the Query features. We chose the Query setting as
a baseline because it was similar to the approach used in current search engines
that extract code snippets in a result page.
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We rated whether the AST+Query summary was better than, worse than,
or the same as the Query summary. Of the 53 summaries in the evaluation set
of the Eclipse corpus, for the purpose of the manual analysis, we eliminated 13
in which both feature sets produced exactly the same summaries, leaving us
with 40 pairs for the analysis. In 27 out of 40 pairs, we arrived at a decision
from considering the individual lines.For the rest of the 13 pairs, the decision
required considering the summaries as a whole:

• In seven cases, a summary was worse because a line with a variable use
should be in the summary together with a variable declaration. These
cases are addressed in a subsequent summarization approach we proposed
in Section 6.3.4.

• In three cases, the judgement depended on whether it was appropriate to
show the structure (signatures) or not.

• In two cases, a statement spread into two lines were cut off in the
summary.

• In one case, a summary was worse because redundant lines were included.

These four types of cases considering the quality of the summary as a whole
are improvement opportunities for a summary classifier.

4.6.2 Pyramid Precision Results

Pyramid precision weights the more-agreed-upon summary lines more heavily,
whereas the gold standard summaries used in R-precision disregard summary
lines which are less agreed upon. This can be problematic for the code fragment
summarization problem which naturally has low agreement. Pyramid precision
emphasizes the lines more agreed upon by the annotators while de-emphasizing
the lines less agreed upon. More specifically, pyramid precision produces a
score that weighs more heavily the summary lines with higher agreement, and
then normalizes the score by the highest possible score a summary of the same
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Figure 4.13: Comparing the AST+Query and Query summaries using two metrics

length can attain. The score of a generated summary s of length n, score(s),
is the sum of the scores of each line in a summary s, and the score of a line
is defined as the number of annotators who marked the line as important in
a summary. In our case, the best score for a code line is 4 (when all four
annotators marked the line) and the worst score is 0 (when none marked it).
Pyramid precision is score(s) normalized by the score of the best possible
summary sbest of length n: score(s)

score(sbest) . The best possible summary is the set of
the top n lines, if we sort all the lines in a code fragment by the number of
annotators who marked the line as in-summary, or, sbest = maxs∈Sn score(s)
where Sn is the set of all possible summaries of length n. Pyramid precision
does not explicitly evaluate how a generated summary resembles any single
one of the summary provided by an annotator, but how a generated summary
resembles the best possible summary derived from the different versions of the
summary provided by the annotators.
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The average pyramid precision for 3-line summaries using AST+Query17

features for the within-API precisions was 0.745 as compared to 0.550 when
using query features alone, with the full distribution in Figure 4.13a. To
provide a point of reference, we also provide the R-precision distribution in
Figure 4.13b. There are two code fragments with R-precision or pyramid
precision=0. Surprisingly, there is only one other case where R-precision of
query-based feature is higher (0.8) than AST+Query (0.6). There are seven cases
where pyramid precision yield same results for both versions as R-Precision.
Interestingly, the two metrics both appear to measure the same construct. The
Pearson correlation coefficient of the two metrics on the AST+Query summaries
was 0.857, indicating a linear relationship with statistical significance (t =
11.9, p = 2.22× 10−16).

4.7 Chapter Summary

Selecting important parts of a code fragment is a crucial step in any type of
summarization system. In this chapter, we reported on a case study on this
selection step, via the design, implementation, and evaluation of a machine
learning approach on the summary line classification problem. We report on
four lessons learned which we subsequently addressed in the human study
(Chapter 5) and the construction of Konaila (Chapter 6): the best performing
feature set being the combination of syntactic and query-related features, and
three limitations from the machine learning based line-based summarization
approach. These limitations were in using line as the granularity, difficulty in
obtaining training data with high quality, and only using features that were
local to a line without considering dependencies among different parts of the
code. The lessons learned from this case study constitute the first contribution
of this dissertation.

17We used AST rather than ASTReduced for this comparison.
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Combination of syntactic and query features, but not call frequency: We
found in RQ 1 (Section 4.3) that a combination of syntactic constructs (ASTRe-

duced or ASTCompact features) in a code example and the amount of overlap
with a query (Query features) produced better summaries than using syntactic
or query overlap alone for within-API and cross-API summary-line predictions.
Not only did the call frequency features (CallFreq) not increase the quality of
the summary, they were computationally costly to generate as the computation
involved the use of a sophisticated program analysis algorithm (Partial Program
Analysis [19]) to resolve type bindings in a code fragment. Without those
features, the syntactic and query-related features are fast to generate (0.09s
per code fragment), making it possible to deploy in a real application setting.
These insights were key in the design of Konaila in Chapter 6.

Limitation on line granularity: As a first attempt at code fragment sum-
marization, we formulated the problem as a line-based classification problem
(Chapter 3). As the qualitative analysis highlighted (Section 4.6.1), line-based
summaries did not always result in sensible summaries, for example, when
only one of lines from a multi-line statement was selected for a summary.
Fundamentally, the line granularity does not align with the structure of code.
However, what is the right granularity? We report on additional insights on
the granularity issue in the empirical study (Chapter 5), as well as a new
unit of analysis called selection unit in our subsequent attempt at designing a
summarization technique, Konaila (Chapter 6).

Difficulty in obtaining data of high quality: In RQ 3 (Section 4.5), we did
not find a degradation in the annotators’ agreement when we replaced the
summaries from each of the four annotators with our automatically generated
summaries. This result suggests that given this data, the classifier we reported
in this chapter is an effective classifier for the line-based summarization problem.
However, the Kappa agreement of the four annotators (0.487) was moderately
low, indicating a significant disagreement among the annotators on which lines
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are important for a summary. There is a limit to the performance one could
expect from a supervised machine learning approach, a data-driven approach,
that relied on this same set of annotations. In Chapter 6, we report on Konaila
which does not depend on annotated data.

Limitations on local features: The three types of features we investigated
were all features local to a line not considering dependencies among different
parts of the code. As we saw from the qualitative analysis, this decision directly
affected the coherence of the summary. In Chapter 6, we report on features
that involved dependencies among code units, such as dependencies among a
variable declaration and its usage.
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Chapter 5
Understanding Code Fragment

Summarization

To inform the development in source code summarization technology, we
conducted a study to see how humans shorten code fragments. The goal of the
study was to learn code summarization practices and their justification from
human participants. We had two research questions:

1. Selection: Which parts of the code from an original code fragment
should be selected for a summary, and why?

2. Presentation: How should the code be presented in a summary, and
why?

This chapter describes the summarization study, which appears in a conference
publication [102].

5.1 Study Set-Up

To answer the two research questions, we recruited 16 participants and asked
them to shorten ten code fragments each. We instructed the participants to
verbalize their thought process using the think-aloud protocol [47]. For each
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Figure 5.1: Study Set-Up and Conceptual Framework

code fragment studied, to be able to estimate differences in personal style, we
asked three participants to shorten the code fragment, the result of which we
call a summary. In total we collected 156 summaries on 52 code fragments and
26 hours of screen-recording with synchronized audio. We base the observations
reported in this chapter on this data.

By analyzing this data and answering the two research questions, we learned
how concrete code summarization practices lead to specific usability effects
for a code fragment. This knowledge directly supports the design of tools to
automatically extract and format code examples, such as Konaila (Chapter 6).

The rest of this section describes the details of the task, code fragment
corpus, and participants involved in the study, also illustrated in the left part
of Figure 5.1. The right part of Figure 5.1 illustrates the conceptual framework
of the data analysis, which is described in Section 5.2. Sections 5.3 and 5.4
respectively present answers to the two research questions.

5.1.1 Summarization Task

We define of a code fragment summary by adapting the definition of a textual
summary [72], as introduced in Chapter 3. A code fragment summary is smaller
in size than the original code fragment and conveys important information
in the original fragment. The major goal of a code fragment summary is to
present the main ideas in the original fragment in less space.
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We asked the participants to provide free-form1 summaries. For each code
fragment, a participant was instructed to write a summary of no more than
three lines. To help participants envision the results, we asked them to make
summaries as if they were to serve as content summaries in a result page for a
search engine (for documents containing source code).2

To provide a summary of a code fragment, the participants used a data
collection tool we designed for this study (Figure 5.2). The top section presents
contextual information relating to the code fragment (Section 5.1.2). The
middle section shows the original code fragment the participants were asked to
summarize. Finally, the bottom section is a fixed-sized text box in which the
participant was asked to enter the summary. In addition to the summary, for
each line in the summary, we asked the participants to indicate which lines from
the original code fragment the particular summarized line came from. This
approach is used in experiments in the textual summarization community [67]
for the purpose of evaluating how different summaries overlap. We used this
information to determine the textual difference between the original and the
summary described in Section 5.2.

We asked the participants to verbalize their thought process for the entire
duration of their summarization activities. We recorded the verbalizations
together with a video of the screen.

We chose to study the summarization practices in a lab setting with access
to the summary author. The participants’ verbalizations contained the rationale
behind the decisions taken in generating the summaries. Such rationale is
harder to reliably infer by the experimenters themselves in the absence of the
author of a code example. We also designed the study to have multiple authors
summarizing the same code example so that we could examine the variability
among different code summary authors.

1See the summary composition design dimension in Section 3.1.4.
2The summaries are part of the artifact companion package to the publication [102],

made available at http://annieying.ca/fse2014/fse2014-artifacts.zip. The artifact
package has been approved by the conference’s Artifact Evaluation Committee.
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5.1 Study Set-Up

Figure 5.2: Annotation tool featuring a summary by P6 (the “Shortened code
example” box) and the original 25-line long code fragment. The code fragment
is reproduced from Android API Guides [2] with permission under the Apache
Software License, Version 2.0.
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The summarization task was constrained by our decision to limit summaries
to three lines. This forced the participants to make choices that were not
necessarily the ones they would make if this experimental procedure had
not been in place. Research in text summarization suggests that fixing the
summary length in an experiment is crucial because summaries of different
lengths directly affect the actual content of the summaries [35]. The artificial
setup is a component of any lab study: although it decreases the ecological
validity of the task, it has the major advantage that it supports the systematic
analysis and comparison of the code summarization practices. We return to
this issue in Section 5.2.

5.1.2 Code Fragments

Selecting code fragments to study summarization practices presents two chal-
lenges. First, the general idea of summarization is context-sensitive because
of the requirement to assess the relative importance of the elements in the
original code fragment. To distill a fragment to its essence, participants need a
basic idea of what the fragment is about. Second, code summarization requires
a non-trivial level of programming expertise: we cannot ask participants to
summarize code they do not understand.

We addressed both challenges by selecting the code fragments from a
well-defined corpus of programming documents: The Official Android API
Guides [2]. This documentation contains a mix of natural-language text and
code fragments meant to explain and demonstrate the usage of the Android
API. Selecting code fragments from this documentation helps us address the
first challenge above (context) by allowing us to draw from the structure of the
text surrounding a code example to provide the context. It helps us address
the second challenge by explicitly scoping the expertise required of participants.
We discuss the implications of selecting code fragments from this corpus on
the generalizability of the results in Section 5.2.
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We extracted all code fragment candidates in the Android guide (1) that
were enclosed in HTML pre tags; (2) that were non-XML, leaving only fragments
with code (though not necessarily Java); (3) that had ten or more non-empty
source code lines; and (4) whose closest enclosing heading started with a verb,
e.g., “Passing events back to the dialog’s host.” Selecting candidates with a
heading that starts with a verb is due to the necessity in providing a context for
the code example (Section 5.1.3). We automatically determined these headings
using a Part-of-Speech tagger.3 These four criteria produced 166 candidates.
We randomly selected 52 fragments for the study.

5.1.3 Context Generation

We generated a context for each fragment using an automatic procedure
based on the headings enclosing the code fragment. For each fragment, we
constructed a context that consists of two parts. The immediately enclosing
heading describes a specific purpose of what the code fragment is supposed to
demonstrate. The rest of the enclosing headings point to the general area of
the Android API the code fragment demonstrates. 4

Figure 5.2 demonstrates a code fragment taken from a page with two levels
of subsections: First, the page is titled “Dialogs” and the second-level heading
is titled “Passing Events Back to the Dialog’s Host.” In this example, the
title of the page, “Dialogs”, shows which part of the Android API the code
fragment is taken from, as displayed in the annotation tool in Figure 5.2.
The second-level heading provides a more specific purpose, which we marked
as “Query” in the annotation tool. For the code examples with three levels
headings, the third-level heading is displayed as “Query”, and the first two
levels are displayed under “Android API”. This automatic procedure eliminates
the threat of investigator bias in crafting the context, at the cost of a potential
loss of precision in how well the context describes the fragment.

3http://nlp.stanford.edu/software/tagger.shtml
4These headings are part of the artifact we made available at http://annieying.ca/

fse2014/fse2014-artifacts.zip.
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5.2 Conceptual Framework

Table 5.1: Participants’ Development Experience

Java    \    Android looked at Android API developed an app professional
1 year P3,6,7,8 P4,5,10

between 1 & 5 yrs P9,14,15 P1 P11
between 5 &10 yrs P2 P16
more than 10 yrs P12,13

5.1.4 Participants

We assigned the 52 fragments to the 16 participants (P1 to P16) in a way
that ensured that all fragments were summarized by exactly three participants.
Twelve participants were assigned ten fragments and four were assigned nine
fragments.

We required participants to have one year or more of Java programming
experience, and have at least looked at the Android API. Of the 16 participants
in the study, five were recruited from local professional programmer meet-up
groups, one through personal contacts, and the remaining ten from the McGill
School of Computer Science (nine graduate students and one undergraduate).
Table 5.1 presents the participants’ Java and Android development experience.
In total, seven had professional software development experience.

5.2 Conceptual Framework

The study produced two different types of data: shortened source code and
the verbalizations of participants. We analyzed this data using a combination
of quantitative and qualitative [81] methods. The basis for the analysis was
the systematic extraction of the textual differences between code fragments
and the corresponding summaries (“Diff” in Figure 5.1). We then refined the
difference into a structured list of summarization practices. For this purpose
we followed coding (or classification) techniques [81, Section 2.3], guided by
the categories of operations in textual summarization [36]. We distinguished
practices concerning the type of content selected and the way the content
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P6's 
summary

P7's
summary

P12's
summary

...extends FragmentActivity implements NoticeDialogListener{     
void showNoticeDialog() { //  create instance and show it}
void onDialogPositiveClick(DialogFragment dialog) {//same for negative click }

public void onDialogPositiveClick(DialogFragment dialog) {
public void onDialogNegativeClick(DialogFragment dialog) {

extends FragmentActivity implements NoticeDialogFragment.NoticeDialogListener{
// The dialog fragment receives a reference to this Activity through the
public void onDialogNegativeClick(DialogFragment dialog) 

Originated from 
the same fragment line

Figure 5.3: Summaries on the same fragment, with variations on the presenta-
tion highlighted

was presented in a summary (“Selection” and “Presentation” in Figure 5.1).
The categorization enabled a quantitative assessment of the frequency and
generality of each practice. To make hypotheses justifying the use of different
summarization practices, we relied on a quantitative analysis of the distribution
of each summarization practice across code fragments and participants. This
aspect of the analysis was directly enabled by the choice to have each code
fragment summarized by multiple participants. Finally, we inspected the
transcripts of the participants’ verbalizations for evidence of the intent behind
each practice.

We distinguished between selection and presentation because even sum-
maries with content associated with the same part of the original fragment
could have variations on how the summary content was presented. For example,
P6’s and P7’s respective summaries (Figure 5.3) of the same fragment both
included the signature of the method onDialogPositiveClick (marked by the
arrow in bold), but P6 chose to leave out the keyword public and added a
comment in the body (the dark shade in the third line), and P7 chose to
provide the complete first line of the method declaration (the dark shade in the
first line). P12, whose summary contained the signature of a different method,
chose to provide the first line of the method declaration without the body
(the third line). The decision of treating the removal of tokens (e.g., public)
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as presentation, rather than selection (i.e., de-selecting public) is dictated by
granularity. The granularity we chose for selection is at a higher level in the
abstract syntax tree than individual Java tokens. A granularity at the token
level would result in more decisions, complicating the conceptual framework of
the analysis and the computational complexity of a summarization algorithm.5

This separation of content selection from presentation is typical in a natural
language generation system, where the selection granularity is typically at the
sentence level rather at the word level [76].

5.2.1 Links to the Evidence

This study reports primarily on evidence of a qualitative nature. A major
challenge for reporting observations derived from qualitative data is linking
to the evidence upon which an observation is based. In our case this amounts
to providing, for each observation, the number of fragments where a practice
is observed and the distribution of these fragments across participants. This
amount of precision can quickly overwhelm the text to the point of unreadability.
Instead, we use a new visual approach inspired by the idea of sparklines [93]. A
sparkline is a small graphic embedded in the text, drawn without axes. In our
context, a histogram presents the distribution of observations of a given practice
for a participant (each bar) over the ten code fragments (the vertical axis).
The 16 bars corresponding to participants are sorted in decreasing number of
code fragments where the evidence was observed. The vertical axis represents
the number of code fragments where the evidence was present. For example,
the histogram for the practice shortening identifiers is , signifying that
eight participants showed evidence of the practice in 8, 6, 5, 5, 4, 4, 3 and
3 code fragments respectively, and the rest of the participants did not use
this practice. We can compare different practices in terms of the amount of
evidence that was observed across the participants and code fragments. For
example, the practice shortening identifiers was observed in more participants

5Section 3.1.3 contains additional discussion on granularity.
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and more summaries than the practice shortening API names ( ). This
observation can be deduced by comparing the dark area of the two histograms.

The in-lined histograms are intended to provide a convenient and com-
pact assessment of the amount of evidence for a practice. We provide more
detailed links to the evidence in Table 5.2, which relates the histograms to
the specific participants associated with the practices, as well as the number
of code fragments observed and the number of occurrences in the summaries.
Finally, each quote explaining the rationale for a practice is annotated with
the corresponding participant identifier, whose characteristics can be found in
Table 5.1.

5.2.2 Threats to Validity

The threats to validity for this study concern the reliability of the observations
for the purpose of informing source code summarization technology. We consider
the risk that a reader wishing to rely on these observations could be misled.

The corpus of code fragments is limited to 52 fragments in one technology.
It is not representative of any defined population of code fragments besides the
Android documentation. However, the contributions we provide in this chapter
do not involve generalization from a sample to a population. We make no claim
about how often the practices we noted are used in general, and we do not
think such a projection would be particularly useful. Instead, the implications
of our results concern the goodness of fit of a certain practice to achieve a
particular selection or presentation goal, which is independent from frequency
counts. We indicate frequency counts for each practice to be transparent about
the strength of the evidence for the observations, without implying that they
can be extrapolated.

One threat of using frequency counts as a measure of the strength of the
evidence is that not all practices are equally likely to be observed in the 52
fragments. It is possible that our data misses some useful summarization

84



5.3 Selection Practices

practices, for example if they target special source code patterns that were not
part of our code fragment corpus.

Our use of a grounded approach means that the data is collected directly
from participants and, as such, is influenced by them. The corresponding threat
is that a participant with an unusual background or behaving strangely could
corrupt the data. Our experimental protocol required participants to justify
most of their decisions, allowing us to discover such potential problems. We
observed that all participants appeared to complete the task in earnest. To
avoid injecting our own bias, we did not attempt to judge the quality of the
summaries.

As mentioned in Section 5.1.1, the summarization practices we observed
were employed in a context where participants were required to produce a short
(three-line) summary. This decision was necessary to obtain comparable data.
At the same time, it also means that different practices might be useful in
contexts where the desired output summary is not constrained by size.

5.3 Selection Practices

Selection practices concern how participants decided on which content to
include in a summary, e.g., whether to include a specific method declaration
that matched the query terms or whether to exclude exception handling code.
We observed three types of selection practices, each using a distinct type of
information: language constructs from the code example itself, query terms,
and human considerations, such as the programming expertise of the reader.

Understanding these practices can help determine what type of content
should automatically be selected (or filtered out) when presenting code examples
in contexts where summarization is appropriate (e.g., in search results).
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Compilation Unit 0 / 3

    Package Declaration 0 / 21

    Import Declaration 0 / 21

    Class Declaration 50 / 54

        Class Signature 12 / 50

        Class Body 50 / 50

            Method Declaration 184 / 210

                Method Signature 124 / 184

                Method Body 126 / 184

                    Conditional Structure 65 / 165

                    Try Statement 9 / 12

                        Try Block 9 / 9

                        Catch Block 0 / 9

                        Finally Block  0 / 3

     Comment 33 / 702

# of Selected

# of Eligible for 
Selection

Figure 5.4: How often a construct was in a summary
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5.3.1 Practices Related to Language Constructs

Certain types of language constructs were consistently included (e.g., content
of a class) or excluded (e.g., exception handling code) in a summary. Figure 5.4
shows how frequently a language construct appeared in a summary (“# of
Selected”). To put these frequency numbers in context, we also provide how
frequently the construct was eligible for selection (“# of Eligible for Selection”).
This second set of frequency numbers represents either the occurrences of
the construct in a code fragment shown to a participant (e.g., try exception
handling blocks do not occur as often as method declarations), or the number
of times the parent node was selected in a summary (e.g., a method signature
can only be selected when a method declaration is selected). Finally, the pie
charts show the ratio “# of Selected” divided by “# of Eligible for Selection”.

The first two practices involve methods. All participants selected methods
( ), as P14 justified, “First, I want to know the functions I have to use.”:

Practice - Including (or Excluding) the Method Signature: De-
pending of the code fragment a method signature can be included or excluded.

Including the method signature ( ) was considered as part of keeping
the structure of the code. As one participant put it, “because there’s a lot of them
[code], it can be anything. It’s the structure. The main part is the class BillingReceiver
which extends BroadcastReceiver, the method that overrides inside. The rest can be
ignored.”P9 Another participant chose to show the structure of the code rather
than the control flow structure: “The switch is more about how the method functions.
What are the possible functions and outcome. [...] I was just given switch, I have no
idea of what it is.”P7 This structure can be important in code on the Android
platform with a substantial amount of call-backs. There were fewer cases in
which only the method signature was kept ( ), while more fragments
had both the signature and the body selected for the summary ( ).
One reason for keeping the method body was that the fragment has more
computation-intensive code. For example, a fragment about the usage of the
gyroscope had more than half of the lines on mathematical computations. For
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that fragment, all three participants included at least two statements from the
method body.

Participants collapsed the method by displaying the content of the method
without the signature ( ). One participant who eliminated the method
signature said that the declaration was a common API call-back, saying, “This
handler is pretty much for any activity.”P4 Another reason was that the participants
expected the user of a summary could find the signature through the IDE.

Practice - Including Overriding Methods: Of the method declarations
with an explicit @Override annotation (43 methods), most of the methods (36)
were included in a summary by at least one participant. One participant even
called it a “regular pattern”P13 to include overriding methods. The seven methods
not included by anyone were in code fragments with other choices of methods.
However, the override annotation itself was rarely kept, only in seven code
fragments ( ).

Annotating a method declaration with @Override provides a Java compiler a
way to catch spelling mistakes, when a developer intends to override a method
from a super-class but the method does not exist. The annotation is also
meant to make it obvious when a method declaration overrides a method in the
super-class. While no participants cited the former intention of the @Override

annotation, a few participants said that the annotation could remind the
reader of the summary that the method declaration was overriding a method
in the super-class: “What’s I’m trying to tell the user is that he has to override
the onCreateDialog method.”P3 On the other hand, user-defined methods not
involving in an event call-back do not tend to be included in the summary, as
P9 put it: “The main [and other methods containing application code] can change.”

Practice - Excluding Exception Handling Blocks: None of the excep-
tion handling code, enclosed in catch or finally blocks, appeared in a summary.
There were several intents behind the practice of excluding exception handling
code. First, exception handling code was not unique to an example (“Try-catch
is part of almost all standard code.”P5) or too obvious to the reader (“Anyone working
with sockets knows it will throw exceptions. I will remove the catches, and the try.”P2)
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Second, the code inside the try block was kept (while the catch clause was
removed) to show one case of the code: “The first thing you should do in an example
is [to] assume everything is OK.”P2 Third, participants expected that missing
exception handling code would be suggested by an IDE: “[Missing] this exception
you would have Eclipse complaining about it.”P11 Another participant also indicated:
“The first one [to remove is] the try-catch. The IDE, or the compiler itself will fix it,
because you cannot compile it. [...] If he copies my [summary], he needs to fix the
issue.”P2

Practice - Keeping Only One Case in a Parallel Structure: Some
code fragments contained code with multiple cases. In the case of if or switch

statements, more than one third of the instances only had one block selected
for a summary. Keeping one case and dropping the others also happened
with method calls (“I can just remove one of the buttons. Instead of having the
cancel button, I can just have the OK button.”P4) or method declarations (“onStop
is basically the reverse of onResume. It will be OK to just display everything in onResume

[...].”P9)

5.3.2 Practices Based on Query Terms

Not surprisingly, participants used terms from the query to determine whether
a part of the code was relevant enough to include in a summary. Thirteen out of
16 participants explicitly mentioned the importance of the query in the decision
of content selection. For example, “startForeground [a method declaration] actually
starts the foreground service. Since the query [“Running as a foreground service”] doesn’t
have anything to do with the media player, even though it’s part of the API being used,
[...] I left it out.”P15

All 16 participants verbally justified that they selected code elements
because identifiers in the elements matched terms in the query. Of the 70
distinct methods from the 52 code fragments (70 × 3 = 210 instances of
methods eligible for selection from Figure 5.4), twenty-two contained at least
one query term (or stemmed). Of these 22, only one was not selected by any
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participant. Method signatures that did not appear in a summary were often
irrelevant to the query: “This [method declaration not selected] probably does not
have to do with the intent [the query].”P4 Both from the verbalizations and from
the summaries, we conclude that all participants used the query in content
selection for summarization.

5.3.3 Practices Considering the Human Reader

Summaries are targeted to humans. Participants explicitly considered the
expertise of the programmer.

Practice - Including Easy-to-Miss Code: Four participants mentioned
including easy-to-miss parts of the code in the summary, e.g., the method
declaration onResume “is something people tend to forget.”P11 Another participant
made a similar comment and explicitly qualified the advice with the participant’s
own personal experience: “It reflects my own knowledge of this class [...]. If you set
the layout in the wrong place, you can end up with a lot of problems. I want to be
specific there.”P10 Another participant expressed frustration at not being able to
include a call to the super class which was deemed easy to miss: “I’m still not
happy to remove the super. If someone looks at the short one, copy and start. He could
miss it.”P2

Practice - Accounting for Programming Expertise: Seven partici-
pants justified not including parts of the code that were too obvious to the
reader. The code might be obvious because of (1) previous languages used
(“This is C-style where you handle one byte at a time. It would be pretty obvious this is
how you do it”P11) (2) the assumption on the knowledge of Java (“The sockets
[...] is not specific to Android. It’s exactly the same in standard Java”P2) , or previous
knowledge of the Android API (“onCreate is a method where if he knows a little
bit of Android development, he won’t get a lot from this [onCreate] anyways.”P5) In
general terms, one participant explicitly distinguished the different needs of
an expert and a novice of an API: “Someone who’s very experienced [...] may be
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looking for something very specific, [such as] methods [...]. Someone who is a complete
novice would probably look at something very explanatory.”P3

Practice - Using the Query to Infer Expertise: Participants used the
query to infer the level of expertise on the API of the query poser, and then
excluded the part of the API deemed obvious. One participant commented on
the decision of not including certain method declarations for a query about
Near Field Communication (NFC), a topic the participant deemed advanced.
“If someone is doing NFC, [...] someone already knows what onPause [or] onResume is, so
I don’t need to stress it. This is more advanced stuff than how the activity behaves.”P11

The same participant continued on commenting on the abstraction level inferred
from the query: “Especially, when you query something very specific, in this case like
NFC, there isn’t really other stuff to care about.” Interestingly, P11 was one of the
participants who deemed onResume easy to miss in another fragment.

5.4 Presentation Practices

Presentation practices relate to decisions about how the selected content
appeared in a summary. We observed participants made changes to the
selected original content to make it fit into the space allowed for the summary
through practices in three general categories: trimming a line when needed
(Section 5.4.1), compressing a large amount of code (5.4.2), and truncating code
(5.4.3). Beyond presentation decisions for the purpose of fitting the desired
content into the space, we found that formatting decisions were personal and
related to readability of the summary (5.4.4). Despite the task’s focus on
reducing code, we observed participants improved the code, e.g., by clarifying
comments (5.4.5).

The presentation practices we collected provide practical insights into how
source code fragments can be formatted in various situations including on
search results pages, in forum posts, and in tutorial documents.
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Table 5.2: Evidence of the presentation practices

Trimming a Line When Needed 10 P2,4,6,8,10,11,13,14,15,16 33 95

Shortening Identifiers 8 P2,4,6,8,10,11,15,16 29 72

Shortening API Names 4 P6,10,11,15 5 7

Eliding Type Information 10 P2,4,6,8,10,11,13,14,15,16 9 16

Compressing a Large Amount of Code 13 P2,3,4,5,6,7,8,9,10,11,14,15,16 28 46

Shortening Multiple Statements 10 P3,4,6,7,8,9,10,11,15,16 15 51

Shortening Method Declarations 7 P4,6,8,10,11,14,16 10 11

Shortening Control Structures 8 P2,3,5,6,8,10,11,16 12 14

Truncating Code 12 P1,2,4,5,6,8,9,10,12,13,15,16 28 63

Eliminating a Parameter 9 P1,4,5,6,8,9,10,15,16 16 28

Truncating a Signature 9 P2,4,5,8,10,12,13,16 18 35

Formatting for Readability 16 all 52 140

Indenting 8 P1,2,4,7,8,9,13,14 20 27

Treating Lines as Separate 15 all except P10 52 135

Improving Code 9 P1,2,4,6,8,10,11,12,16 9 35

Fowler's Refactorings 4 P1,2,8,11 4 5

Generalization 4 P2,4,8,16 5 8

Clarification 6 P6,8,10,11,12,16 14 22

#Fragments (out of 52) #
Instances

#Summaries
(out of 156)

#Participants (out of 16)Presentation practices
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5.4.1 Trimming a Line When Needed

Ten participants ( ) performed transformations for the purpose of
trimming a line, such as shortening variable names or removing a type qualifier.
These operations happened when the content needed to fit into a line pre-
allocated for that content.

Practice - Shortening Identifiers: We expected participants to shorten
variable and parameter names, because these changes do not change the
semantics of the program. Eight participants ( ) did so in 29 (56%)
code fragments. We observed four ways to shorten a name: (1) using acronyms,
e.g., from sharedPreferences to sp, (2) shortening words in an identifier, e.g.,
from defaultValue to defaultVal, (3) using discourse aggregation for reducing the
complexity [75] by dropping words (e.g., from defaultValue to default) or para-
phrasing (e.g., from tagFromIntent to intenttag), and (4) using a combination
of these operations, e.g., mInputStream to in. These observations concur with
Eshkevari et al.’s taxonomy on identifier renaming in a code base [24].

Practice - Shortening API Names: We expected that the names of
API calls and overridden methods would remain the same in a summary. As
P6 asserted, “I am assuming overridden methods cannot have their names changed.”
Surprisingly, we observed changes to these API elements, by four participants
( ). P6’s justification on the shortening of the name of an API method
was that the name is “abnormally long”P6: “unregisterOnSharedPreferenceChange-
Listener, what kind of name is that?”P6 P6 renamed the method to “unregister...”.
Note that the context was important in this case, as the API call is expected
to be made inside a class that inherited from SharedPreferenceChangeListener,
which defined the unregister method.

Practice - Eliding Type Information: Java requires a variable to have
a declared type in an unambiguous name-space and explicit down casts. In the
context of summarization, ten participants ( ) relaxed this requirement
and elided type information in the following situations: (1) Four participants
eliminated a type qualifier; e.g., “I’m removing the name-space. [...] Someone
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can [put a] import static.”P2 In addition, the type information is a piece of
information expected to be found easily: “[For] the flag, if they are in the definition
of the type, they can see which flags are in the type.”P12 (2) Five participants removed
the variable type in assignments in six assignments that were selected over five
summaries. (3) In the only selected line that contained a type cast in the whole
corpus, all three participants selected that line and removed the type cast in
consensus. (4) Two participants shortened a type reference or a primitive type:
e.g., from Object to obj.

5.4.2 Compressing a Large Amount of Code

Twelve participants ( ) employed more complex abstraction and aggre-
gation practices that greatly reduced the code from its original size. These
changes involved compressing a block of code that contained one or more
method declarations, control statements, or multiple statements and replacing
the code with ellipses or a comment. Four participants (P5,7,9,15) only employed
ellipses when compressing a large block of code, four (P4,11,14,16) only employed
comments, and four (P3,6,8,10) employed both.

It is inevitable that when a block of code deemed important exceeded the
space available for summaries, the participant needed to somehow compress
the code. We observed that participants either compressed the code using
ellipses (“’...’ [indicates] additional important things”P8) or comment. Ellipses and
comments also could “abstract a particular block.”P8 Certainly, comments conveyed
more information than ellipses. However, choosing comments or ellipses was
affected by the trade-off between information and space: All the comments in
the summaries were longer than three characters.

Practice - Shortening Multiple Statements: Ten participants
( ) shortened multiple statements including the whole method body.
The use of comments versus ellipses was split almost evenly: Six of the par-
ticipants (P3,4,6,8,10,11) used comments 22 times and seven (P3,6,7,8,9,10, 15) used
ellipses 29 times. P15 who only used ellipses to summarize multiple statements
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1 /* implement SensorEventListener @override onAccuracyChanged () , ←↩
onSensorchanged () */

2 @override onCreate () , onAccuracyChanged () , onResume () , onPause () ←↩
onSensorChanged () {...}}

3 // remember to override all inherited methods appropriately

Figure 5.5: All three summaries on the same example contained a comment
listing overriding methods

1 while (cur. moveToNext ()) {...}}
2 if ( checked )... else ...}
3 if ( resultCode == Activity . RESULT_OK && requestCode == ←↩

PICK_CONTACT_REQUEST ) { // code for activity }

Figure 5.6: Sample of summarized control structures

said, “Most of the time I put ’...’ when there are lines in between. If you don’t put that
in, it’s less clear there’s other stuff in there.”P15

Practice - Shortening Method Declarations: Seven participants
( ) aggregated whole method declarations by replacing the whole declara-
tion with comments or with ellipses. Unlike in abstracting multiple statements,
most participants (six out of the seven) used comments rather than ellipses (one
out of seven) to abstract method declarations. The ten comments demonstrated
three different ways to abstract content: (1) listing the method declarations
(eight comments), e.g., lines 1 and 2 in Figure 5.5; (2) aggregating lexically [75]
through the use of the quantifier “all” (one comment), as in, e.g., “all inherited
methods” in line 3 in Figure 5.5; and (3) aggregating semantically [75] (one
comment), e.g., the comment //same for negative click which referred to the
code for handling the positive click. Lexical aggregation is a way to summarize a
list of elements with a few words rather than explicitly listing the methods [75].

Practice - Shortening Control Structures: Eight participants
( ) shortened control structures. Four participants replaced a block
in a conditional statement or a switch statement, or in a while or for loop,
with a comment or ellipses. Figure 5.6 illustrates three such examples. Beside
using ellipses and comments, five participants (P2,6,8,11,16) compressed the whole
structure through program semantics preserving transformations. Participants

95



5.4 Presentation Practices

either turned an if statement into a more compact conditional expression (with
operators ? and :), or turned a switch statement into an if: “switch is going
away because [...] they become too big. I’m just going to put an if.”P2

In brief, ellipses and comments were approaches to shorten a large of piece
of code. This result concurred with one of Nasehi et al.’s findings [65] on concise
code examples that contain “place-holders, such as comments or ellipses, which
usually transforms the code to a solution skeleton.” We found that to summarize
method declarations, almost all participants employed comments instead of
ellipses. The majority of the comments were simply listing the name of the
method declarations or using lexical aggregation.

5.4.3 Truncating Code

Code truncation transformations involve shortening a line while violating
syntax. Twelve participants ( ) performed such truncation. These code
truncation transformations affected code compilability, which some participants
considered important. One factor that affected the presentation of code was
a participant’s view on the importance of making the code compilable. This
view varied between the participants. Those who were more indifferent to
the importance of compilability tended to perform code truncating operations
violating syntax, using ellipses, or cutting off parts of a statement or having
unmatched brackets or parentheses.

Four participants mentioned the importance of compilable summaries. The
most common reason was that participants wanted to copy and paste the
code directly: “It’s very important for the code to compile correctly. [...] I’m a very
lazy person. I would Google [...] the snippet, [...] copy it, and pretend it’s mine.”P6

Another reason was for understandability: “Having something compilable allows
me to actually see the effects, and that will help me to understand the code better.”P8

Compilable code was also important because otherwise the summary could
look “sloppy.”P2
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/*convert ns to s */ omega = sqrt(X*X + Y*Y + Z*Z); if (omegaMagnitude > EPSILON)
 { X /= omega; ... } theta = omega * deltaT / 2.0f; deltaR[0] = sin(theta) * X...
deltaR[3] = cos(theta); SensorManager.getRotationMatrix(new float[9], deltaR);

Figure 5.7: A summary without formatting, by P10

It was not always possible to make the code compile. When the code was
not compilable, participants wanted to minimize the non-compilable parts: “I
want to copy the least amount of code or through the least number of places. Copy
code with the least number of changes [that] would [make the code] work.”P6 One
participant wanted to clearly mark the non-compilable parts of the code: “It’s
important to either compile on its own, or if it does not compile, it is readily identifiable
what needs to be done to make it compile.”P8 P8 invented a language construct, a
pair of angle brackets to indicate variables not declared in the summary: “Here
I am going to add uncompilable code [replacing the variable name with <NAME>].”P8

On the other hand, one participant did not see the importance of having
compilable or runnable code: “For such a short and abstract example, [...] we are
not talking about runnable code.”P2 Less so, P4 said, “If it’s not compilable, Eclipse
or whatever editor you use will give some hints. This expects a pointer, or this expects
an object of this class, inherit this class, the kind of auto-fix suggestions that Eclipse
give.”P4

Practice - Eliminating a Parameter: It was sometimes desirable to
eliminate a parameter which is deemed to be a detail: “When we search for some-
thing, we don’t want too much stuff that is irrelevant, [for example,] the parameters.”P9

Nine participants ( ) shortened the parameter list in a method call
or a method declaration. When eliminating a parameter, participants chose
to replace a parameter with ellipses (eight participants over thirteen code
fragments) as well as simply eliminating a parameter (three participants over
four code fragments). P1 justified the use of ellipses: “Here [where the parameters
were eliminated] you have to put ’...’ because there are multiple parameters.”

Practice - Truncating a Signature: Because many of the method
and class declarations are part of the call-back mechanism of the Android
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framework, we expected that when such a method or class signature was
selected for a summary, the signature would be kept intact. For both method
declarations and class declarations, leaving the signature intact was indeed
the most common way for a signature appeared in a summary. However, a
significant number of participants ( ) had summaries with the method
or class signature modified. These changes involved Java keywords (such
as public or static), identifier names, or the whole signature replaced by a
comment. One participant justified the removal of keywords, saying, “public
class something, extend something [...]. This is rudimentary. [...] All this stuff is
meaningless.”P6 This justification corroborates with conclusions from work on
statistical modeling of source code [30], pointing out that source code contains
redundancy.

5.4.4 Formatting Code for Readability

Participants explicitly expressed the importance of two different readability
dimensions that related to formatting: indenting and treating lines as separate.
Figure 5.7 illustrates a summary with little formatting, i.e., without any
indentation, and with no separate lines. In Table 5.2, for formatting practices
we report the number of summaries exhibiting the practice instead of the
number of instances because formatting practices apply to the whole summary,
not necessarily to a specific line.

Practice - Indenting Code: Indentation in code can increase readability:
“It’s easier to see the layers, the level of importance. You look at [the code] from
top to bottom.”P9 Two participants mentioned that indentation is a standard
coding convention and is required by languages such as Python. For example,
“interpreted languages requires indentation, [...] Python [and] CoffeeScript.”P2 Eight
participants ( ) intentionally indented at least one summary. We did
not count cases when the indentation in the summary was not intentionally
put in, e.g., indentation that were simply copied and pasted from the code that
contained indentations.
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Practice - Keeping Lines as Separate: Keeping the summary as sepa-
rate lines can be seen as desirable, whereas wrapping lines and putting two lines
into one can be seen as undesirable. P11 declared, “it’s ugly,” when a comment
expected to fit a line wrapped around to the following line. P2 considered
eliminating a line break between the class signature and the method signature
as undesirable: “The class definition and the method on the same line. That will be
really crazy.” All participants ( ) treated at least one summary with all
separate lines, i.e., not wrapping lines and not putting two lines into one in a
summary.

Participants’ views on readability was divided. Half of the participants
(P2,4,8,9,11,12,13,15) explicitly expressed importance in readability. P2 despised
original code with poor readability: “I look at this and I’m scared. Oh my god,
what’s happening here? There’s not a break line.” The other half of the participants
included P3 who did not think readability is important because summaries
are short: “Since it’s just three lines of code, [...] I don’t think he [the reader] would
mind the formatting.”P3 P10 thought packing more information is more important
than readability: “If it [the summary] is more readable and as a consequence there
is less information, you still would not know whether you want to click [the link to the
whole example.” Despite the eight participants who did not think readability
was important, the two formatting practices were used by all participants
( ).

5.4.5 Improving Code

We observed three types of transformations that improve the code: refactoring,
generalization, and clarification. Nine participants ( ) took the effort
to improve the code: “Can I, interesting, well I guess I can. I should. From my
experience, I will just do this [refactoring].”P2 Because the main objective was to
shorten the code, we found any improvements surprising, especially when some
improvements, such as adding in clarifications as comments, lengthened the
code.

99



5.4 Presentation Practices

1 if (item. isChecked ()) item. setChecked ( false ); else item. setChecked (true);
2 item. setChecked (! item. isChecked ());

Figure 5.8: P4 refactored code from line 1 to line 2

Practice - Fowler’s Refactorings: Four participants ( ) applied
two different types of refactoring to control flow structures [26]. P2 and P11
applied refactorings in the spirit of the “Consolidate Conditional Fragments”
refactoring on the same code fragment. P2 eliminated unnecessary control flow
branches, turning line 1 in Figure 5.8 into line 2. P1 and P8, on two code frag-
ments, applied the “Consolidate Duplicate Conditional Fragments” refactoring,
moving part of code that is in all branches of a conditional expression to the
outside of the expression.

Practice - Generalization: Four participants generalized a value or
variable specific to the examples to something more likely applicable to other
contexts ( ). P2 and P4 generalized a constant specific to the examples
to a variable, e.g., from the constant Intent.CATEGORY_ALTERNATIVE to the variable
myCategory. P8 and P16 replaced a variable specific to the example with a
place-holder. The place-holder employed by P8 was an invented notation,
an angle bracket (e.g., replacing the variable R.id.menu_search with <NAME>) or
with a comment for P16, (e.g., replacing the string constant “landscape” with
/*orientation*/). P8 and P16 essentially treated the summary as a closure and
noted the free variables with the place-holder and comment. The terminology
of this type of generalization is called conceptual aggregation in the natural
language generation domain [75].

Eight participants explicitly mentioned that some parts of the code were
important for the example to work, but too specific to the example. One
participant shortened a path because “someone [the query] assumes the data is an
image, but it doesn’t need to be an image.”P2

Practice - Clarification: Six participants ( ) added to the sum-
mary clarifications that were not present in the original code. Five clarified
names of the variables; e.g., P16 justified replacing the variable cur with a

100



5.5 Discussion

more descriptive name, queryResult, especially important for a variable that is
the input or the result of a piece of code: “Intermediate variables don’t matter, but
what needs to be fed in and what needs to come out, those two variables [cur and cr],
[matter.]”P16 We observed 16 comments in nine different code examples. Fifteen
of those comments reiterated what the code summary presented, while one
comment (//Start and stop download when activity is in foreground) clarified
that the call-backs onResume and onStop were run in the foreground, an insight
not explicit in the original code. Some of these clarification transformations
are found in automatic algorithms to expand and improve identifiers [45].

5.5 Discussion

Most of the work on code example generation and summarization has focused
on the content selection aspect. Language constructs have been used for
code fragment summarization (Chapter 4) and code example synthesis [38].
Systems for extracting [5], synthesizing [11, 38], or summarizing (Chapter 4)
code examples have made heavy use of query terms. These practices of using
language constructs and query terms were used by the participants, a result
concurring with existing work. Section 5.5.1 discusses some novel types of
information we observed beyond the existing use of code itself and query terms.
Sections 5.5.3 to 5.5.4 focus on implications related to the presentation practices.
Finally, Section 5.5.5 discusses implications on programming environment
design.

5.5.1 Selection Beyond Code and Query Terms

Accounting for expertise information to determine which content should be
included can be a promising type of information to complement existing code
example search engines that are based heavily on the code itself and the query
as the input to the analyses. Existing measures to quantify expertise include
the use of commit logs and interaction history [60, 27]. These measures all share
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the assumption that the more a developer changes the code or calls a method,
the more expertise of the corresponding code or API method the developer
has. We observed that participants either assumed the reader had a certain
expertise or inferred expertise from the query (Section 5.3.3). In information
retrieval, the foundational research on inferring intention is whether a query is
informational or navigational [46].

5.5.2 Most Summaries are Abstractive

Current textual summarizers generate two types of summaries: Extractive
summaries have the content obtained solely from copying and pasting whole
sentences from the original document, whereas abstractive summaries can
contain text modified from the original document [53].

If all participants were to provide extractive summaries, we would only ob-
serve selection practices and formatting practices (modifications involving white
spaces) in the summaries. However, all 16 participants ( ) employed
modifications beyond changing white spaces, namely, modification involving
trimming a line ( ), compressing a large amount of code ( ), and
truncating code ( ). As we saw in Section 5.4, the participants made
changes to the selected content to make it fit into the space allowed for the
summary.

Modifications associated with abstractive summaries were present in 90%
(47 out of 52) of the the code fragments; thus, these 90% of the code fragments
had at least one abstractive summary provided by a participant.

5.5.3 Abstractive Summary Generation

The code-shortening transformations found in the field of code transformation
and example generation and extraction typically generate syntactically correct
code and preserve program semantics. For example, shortening identifiers
using acronyms is used in Buse and Weimer’s code example synthesizer [11].
Knowing which words to shorten in an identifier or using discourse aggregation
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require a deeper understanding of the linguistic aspects of the identifier, such
as part-of-speech information. We observed the shortening of API names only
in exceptional cases, when the context was clear and when the name was long.

Two presentation practices involving compressing a large amount of code
(Section 5.4.2), shortening multiple statements and shortening method decla-
rations, did not necessarily result in source code. In the shortening method
declarations practice, we observed summaries with both code and natural
language. Overall, seven participants ( ) injected additional natural lan-
guage (in the form of comments or place-holders described in Section 5.4) into
the code summaries. This motivates a novel type of transformations that mix
code and text. The only work we know of in this area is the natural summaries
generated by Rastkar et al. [73]. Their summaries describe a commit as part
of a software concern. The patterns found in their summaries include listing
the method declarations changed in a commit and using lexical aggregation
to to describe a commit (e.g., “All of the methods involved in implementing
‘Undo’ are named undo”). We have observed both patterns (listing and lexical
aggregation), as shown in Figure 5.5.

The presence of improvement transformations was surprising. However,
the proportion of these transformations were small. The five instances of
refactoring of control flow structure were out of 65 on conditional structures
selected, and the ten instances on generalization and clarification on values and
variables were a small fraction of the total number of statements containing
a variable. The 16 comments were only inserted by two participants, and
most of the comments were redundant because they reiterated the code. Also,
generalization and clarifications are challenging to generate even in a natural
language generation system. Extraneous to the main goal of a summarizer,
improvement transformations should be of lower priority for a summarizer to
address.
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5.5.4 Silhouette of a Summary is Important

Formatting practices determine how much space a summarizer has for a sum-
mary. We observed that all participants employed some formatting in their
summaries. The formatting included respecting indentation and keeping lines
as separate lines. These results uniquely apply to the problem of summarizing
and presenting source code, as opposed to text. Text summarizers typically
use the space as a contiguous stream of characters with no indentation.

The amount of space in the summary could affect readability. “I don’t like
packing more stuff. I always want readability. That helps me, in one glance, to assess
whether the particular code is helpful or not. [...] If the code is packed, it’s pretty hard.
It would go for another example which has more clarity.”P4 We did not derive any
specific practice from this behavior due to the difficulty of objectively defining
what “packing more stuff” means. We nevertheless observed that there did
not appear to be a strong correlation between the length of a code fragment
and the length of its summary (Pearson R = 0.0758, p = 0.347).6 This result
indicates that many other factors could influence the density of a summary.

In addition to the formatting practices we have presented, P13 explicitly
mentioned the preference of having short lines so that the code was formatted
in a narrow, vertically long style: “My style is longer vertically than other people.
When I see other people putting wide lines, it bothers me because important bits of
code can get lost of the right side of the line. I spent a lot of my career taking other
people’s code, becoming the maintenance guy, as I have to learn the code base. I’d like

6The data points we used for the Pearson correlation calculation were the length of the
156 summaries and the length of their corresponding code fragment. One concern with this
calculation was that the data points (summary lengths and the corresponding code fragment
lengths) were not independent because there were three summaries per code fragment. To
see whether this situation affected the result, we took three random samples from the data
points, sampling without replacement, so that each sample contained only one summary per
code fragment (i.e., Select randomly one summary for each fragment, calculate the Pearson
correlation coefficient on this set, select one summary from the remaining two, calculate
the correlation on the second set, and then calculate the correlation with the final set.)
The Pearson correlaction coefficients on the three samples were R = 0.0361 (p = 0.799),
R = 0.127 (p = 0.371) and R = 0.102 (p = 0.473) all indicating that there did not appear a
strong correlation between the length of a code fragment and the length of its summary.
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the important stuff to be in the front of the line.” This idea suggests a different
design to the search result page. Instead of having wide summaries ordered
vertically in a search result page, an alternative design is to have narrower
and longer summaries. This design idea contributed to the motivation of
the two-dimensionally constrained summaries we introduced in Section 3.2;
Chapter 6 describes Konaila which generates such summaries.

5.5.5 Programming Environment Design

We have not observed any summarization practices involving reordering code
beyond comments or white space. This implies the possibility of populating
a collapsible code editor initially with the summary and the rest of the code
as being expandable. One early support in programming environments for
displaying code in a collapsible manner is RPDE [29]. The RPDE framework
“provides an composition facility [...] to construct a two-dimensional image,”
containing “a set of objects defined by the user as the focus set, the objects
required to establish the structural relationship among the objects in the focus
set, and as much nearby material as will get on the display” [29]. Modern
programming environments, such as Eclipse,7 support folding editors where
segments of code can be collapsed or expanded. What can be collapsed and
what is initially collapsed are hard-coded.

The preference for copying-and-pasting code (Section 5.4.3) indicates that
a search interface should support copying and pasting compilable code. One
possible user interface is to provide a code fragment summary as a search result
clue, and provide a separate widget for copying and pasting the full, compilable
code.

7http://www.eclipse.org/articles/Article-Folding-in-Eclipse-Text-Editors/
folding.html
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5.6 Chapter Summary

This study elicited selection and presentation practices we observed from 156
concise code representations obtained from 16 participants. The goal of the
study was to inform the design of concise representations of source code and
automatic summarization algorithms. The selection practices we observed
reinforce the existing usage of code and query terms in content selection in
the summarization domain. The selection practices revealed the importance of
the human reader, as we observed that participants targeted summaries to the
expertise level inferred from the query. Moreover, participants did not simply
copy and paste parts of the the original fragment to the summary verbatim;
all 16 participants employed practices to modify the content, mostly with the
intent to make it more concise but also make it more compilable, readable, and
understandable. The practices directly inform the design and the generation
of concise source code representations. More specifically, insights from the
formatting practices (Sections 5.4.4 and 5.5.4) motivated the formulation of
two-dimensionally constrained summaries (Section 3.2). Selection practices
presented in Section 5.3 motivated the design of the four salience filters in
Konaila (Section 6.3), our second attempt at building a code fragment summa-
rizer. In this study, we also gained understanding in the granularity human
selected code content for a summary; this understanding directly informed the
definition of selection units (Section 6.2.2), the granularity used in the Konaila
summarizer.
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Chapter 6
Optimization-Based Code Fragment

Summarization

This chapter reports on the design, implementation, and evaluation of a
technique targeted to the summarization problem we formulated in Chapter 3:

Given as input a code fragment and a query (a set of keywords),
produce a shorter version of the fragment that fits in a two-dimensional
space (L lines by W columns) and that captures as much as possible
of the essential elements of the original code related to the query, while
remaining readable.

The technique is based on optimization and is embodied in a tool we imple-
mented called Konaila. Konaila first estimates the value of a code unit, and
then uses optimization to maximize the value of the content selected while
constraining the chosen content to be formatted within an L by W space.1

Konaila estimates the value of a code unit to a summary using four salience
filters: query relevant call filter, call-back filter, control flow filter, and variable
definition-use filter. The filters take advantage of multiple aspects of the input
code fragment and the query: the similarity of the words in a code unit to
the query, the extent to which the syntax of the code unit is indicative of

1Regarding the space constraints, see Section 3.1.5.
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importance, and the extent to which a code unit is involved in dependencies
among a variable declaration and its usage. The motivation for using query-
and syntax-related features is based on the relative success in using the com-
bination of these two types of features in our machine learning case study
(Section 4.3) and the selection and presentation practices (Sections 5.3 and 5.4)
from our empirical study on summarization practices. We also incorporated
into the salience filters knowledge from existing research [42, 79, 82, 85, 89].
Because Konaila handles incomplete code fragments and some pseudo-code,
it can generate summaries of code fragments on the web such as those from
Stack Overflow.

The evaluation of Konaila involved eleven human raters2 evaluating alto-
gether a total of 364 sets of summaries generated from code fragments found
on Stack Overflow. Raters also judged that Konaila’s summaries were better
at capturing the original elements of the code related to the Stack Overflow
question while remaining readable, compared to a competitive baseline that
included code units that maximally fill the given space. Raters judged that
Konaila’s summaries were better than summaries generated without using
optimization, indicating that optimization is essential in the effectiveness of
the summarization technique. We observed that, according to raters, 52.1% of
Konaila’s summaries captured as much as possible the original elements of the
code related to the Stack Overflow question while remaining readable. Even
though 52.1% may seem low, it is statistically significantly better than the
baseline summaries, and we have to interpret this number with two consider-
ations: the inherent subjectivity in summarization and the large number of
decisions involved in summarization.

The inherent subjectivity in the problem of selecting the most salient
content has been well documented for text summarization [49, 67]. For code

2We refer to the participants in our summary evaluation tasks as raters rather than
annotators, the terminology we used to refer to the four programmers who created the
finer-grained corpus for the machine learning based experiments in Chapter 4. The difference
in terminology is due to the difference in the goal, i.e., an annotator determines what should
be in a summary while a rater determines how good a summary is.
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P6's 
summary

P7's
summary

P12's
summary

...extends FragmentActivity implements NoticeDialogListener{     
void showNoticeDialog() { //  create instance and show it}
void onDialogPositiveClick(DialogFragment dialog) {//same for negative click }

public void onDialogPositiveClick(DialogFragment dialog) {
public void onDialogNegativeClick(DialogFragment dialog) {

extends FragmentActivity implements NoticeDialogFragment.NoticeDialogListener{
// The dialog fragment receives a reference to this Activity through the
public void onDialogNegativeClick(DialogFragment dialog) 

Originated from 
the same fragment line

Figure 6.1: Even summaries on the same fragment have a lot of differences due
to the inherent subjectivity of the summarization task.

fragment summarization, we also observed the subjectivity issue from our
study of summarization practices. For example, Figure 6.1 (reproduced from
Section 5.2, Figure 5.3) shows that even when three participants shortened
the same code fragment, the three summaries were different, to the extent
that there was not a line in the original code fragment that was selected by
all three participants. The conclusion is that there is no universal “ground
truth” summary. Rather, one can consider all three summaries as correct.
The situation of not having a ground truth is different from other problems in
mining software repositories, such as determining whether a change results in a
bug [39]; one can use the bug fix history to find which methods were changed
to fix a bug and use that as the ground truth. Ultimately, subjectivity leads to
difficulty in obtaining reliable human judgements, and therefore researchers
in text summarization used two types of evaluation procedures: the notion of
correctness that is typically constructed using multiple raters (such as the use
of gold standard summaries in Section 4.1.1), or an evaluation strategy that
involves comparing two full summaries. Our evaluation design is based on the
latter type because we wanted to elicit feedback on the summary as a whole.

Figure 6.1 also illustrates the complexity of the summarization problem.
Even when two participants selected the same line (e.g., the method signature
onDialogPositiveClick marked by the black arrow), there were a lot of variations
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1 Display display = new Display ();
2 final Shell shell =
3 new Shell (display , SWT. SHELL_TRIM );
4 shell . setLayout (new FillLayout ());
5 Browser browser = new Browser (shell , SWT.NONE);
6 browser . addTitleListener (new TitleListener () {
7 public void changed ( TitleEvent event ) {
8 shell . setText ( event . title );
9 }

10 });
11 browser . setBounds (0, 0, 600 , 400);
12 shell .pack ();
13 shell .open ();
14 browser . setUrl ("http :// eclipsefaq .org");
15 while (! shell . isDisposed ())
16 if (! display . readAndDispatch ())
17 display . sleep ();

Figure 6.2: A code fragment reproduced from the Eclipse Official FAQ [23]
and with permission under the Eclipse Public License

1 Browser browser = new Browser (shell , SWT.NONE);
2 browser . addTitleListener (new TitleListener () {...}) ;
3 browser . setUrl ("http :// eclipsefaq .org");

Figure 6.3: A summary automatically generated by Konaila from the code
fragment in Figure 6.2

as to how the line was presented. There is a large number of decisions involved
in summarization.

In the remainder of this chapter, we start with an overview of Konaila
(Section 6.1). We describe the design and implementation of Konaila in
Sections 6.2 to 6.4. Section 6.5 presents the evaluation study and Section 6.6
summarizes this chapter.

6.1 Overview of Konaila

We highlight the key insights in the summarization algorithm with an example
based on the code fragment in Figure 6.2. The code fragment is taken from
the Eclipse Official FAQ corpus we constructed for the machine learning case
study (Section 4.1.1). The code fragment is designed to answer the question
“How do I display a Web page in SWT?” which we took as the query.
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Step 1 - Scoring Salient Selection Units (Section 6.3): Konaila determines
which code units (called selection units, defined in Section 6.2) are salient
candidates for inclusion in the summary. In our example, Konaila chooses
candidates based on two salience filters: one favouring calls (Section 6.3.1)
and the second favouring event call-backs (Section 6.3.2). Konaila also applies
a variable-definition-use filter that boosts the scores of units involved in a
variable-definition-use relationship. For the code fragment in Figure 6.2, the
top three candidates are:

• the event call-back “changed” on line 7,
• “final Shell shell = new Shell(display, SWT.SHELL_TRIM);” (lines 2-3),

and
• “Browser browser = new Browser(shell, SWT.NONE);” (line 5).

Step 2 - Applying Length Constraints and Maximizing Scores (Section 6.4):
Konaila eliminates extraneous white-space and determines the number of lines
used by the unit when the space is configured at width W . For example,
to generate Figure 6.3, we set W = 50 characters. Even though the Shell

declaration statement is a good candidate, when considering that it occupies
two lines when formatted to 50-character wide, it is no longer worth-while
given that other candidates occupy only one line. This dilemma demonstrates
the importance of Konaila’s approach of taking into account the amount of
space the unit takes (Section 6.4.1).

With each candidate having a score and a length (in lines), Konaila uses
Knapsack optimization [17]. This optimization procedure selects a set of units
that maximizes the score of the selected set while limiting the length of the
set to be within L lines (here L = 3). Certain code units require appropriate
context. For example, it is undesirable to include the event call-back on line 7
without the enclosing type on line 6. We made an adjustment to the input to the
Knapsack optimization procedure to handle such dependencies (Section 6.4.2).
Taking context into account diminishes the importance of the call-back relative
to the Browser variable declaration statement (line 5).
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6.2 Parsing and Unit of Summarization

There are two challenges in parsing code fragments on the web. First, we
need to construct a grammar to handle code fragments that are typically
incomplete compilation units and that contain non-Java tokens such as “...”
(Section 6.2.1). Second, we have to determine the unit of granularity appropriate
for summarization (Sections 6.2.2).

6.2.1 Parsing Code Fragments

To handle the first challenge, we modified an existing Java grammar to accept
code fragments. This design decision was conceptually and implementation-
wise cleaner than transforming a code fragment into a Java compilation unit
by enclosing it into an empty type stub, method stub, etc. This stub approach
was used in the summarization case study in Chapter 4. Instead, we made
changes to a Java grammar. First, we augmented the entry point for Java
code fragments from CompilationUnit to MethodDeclaration, BlockStatements,
ClassBodyDeclaration, etc. We also added tokens such as ellipses, “...”, as
valid tokens. Appendix A details the changes to the production rules to the
Java grammar to handle code fragments. For implementation, we used the
ANTLR parser generator3 and the Java grammar the ANTLR package provides.
Currently our focus is on summarizing Java code fragments.

Konaila is only applicable to code fragments that satisfy the grammar,
because the ability to parse a code fragment is a requirement for Konaila to
perform subsequent summarization steps. Inevitably, there is no grammar that
can parse all possible code fragments, some of which may be non-Java code. In
Section 6.5.1, we report that out of 64,443 code fragments we extracted from a
set of Stack Overflow answers, Konaila correctly accepted 57,261 (90%) Java
code fragments, and correctly rejected 1,916 (3%) that we verified separately to
be XML fragments. Konaila rejected the remaining of the 5,266 code fragments

3http://www.antlr.org/
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(7%). We analyzed a random sample of 20 (see Section 6.5.1 for the details)
and observed that three were malformed Java code, but we could consider to
expand our definition to include in our code fragment grammar. The other
seventeen were not source code (e.g., console messages) or were written in
different programming languages.

6.2.2 Definition of Selection Units

We defined selection units as atomic units to consider for inclusion in a summary.
Choosing an appropriate granularity is important: a granularity that is too
fine (such as at the token level) unnecessarily increases the number of decisions
a summarization algorithm has to make; a granularity that is too coarse does
not allow the algorithm to selectively choose important parts of the code.

We define4 a selection unit as one of the following Java constructs:

• a statement; when a statement contains a body, for example, a block or a
single statement in an if statement, the unit is the statement excluding
the content of the body;5

• method signature, type signature, interface signature;
• a field declaration, a package declaration, or an import declaration;
• a comment;6

• an anonymous class creation, a method invocation or a constructor
invocation extracted from a statement that spans multiple lines.

The motivation behind the extraction is that Java syntax and developer coding
styles could allow the formation of overly long statements. For example,
Figure 6.4 shows a 30-line statement taken from a code fragment used in our
study on summarization practices (Chapter 5). Intuitively, we want to break
this statement into multiple units, including:

4Appendix B contains additional details on this definition.
5We used a place-holder, ..., to represent the body as we exclude it. For the complete

definition of a statement selection unit, please refer to Appendix B.2.
6Comments include block comments, JavaDoc comments, and line comments.

113



6.3 Scoring Salient Selection Units

• new Thread( ... ).start();

• new Runnable() { ... }

• @Override public void run() { ... }

• int incr;

• etc.

The extraction algorithm is described in Section B.3 in the appendices. For
example, the code fragment in Figure 6.2 consists of 14 selection units:

• Display display = new Display();

• final Shell shell = new Shell(display, SWT.SHELL_TRIM);

• shell.setLayout(new FillLayout());

• Browser browser = new Browser(shell, SWT.NONE);

• browser.addTitleListener(new TitleListener() { ... });

• public void changed(TitleEvent event) { ... }

• shell.setText(event.title);

• browser.setBounds(0,0,600,400);

• shell.pack();

• shell.open();

• browser.setUrl("http://eclipsefaq.org");

• while (!shell.isDisposed())

• if (!display.readAndDispatch())

• display.sleep();

6.3 Scoring Salient Selection Units

The procedure for selecting salient units for inclusion in a summary is motivated
mainly by existing research [42, 79, 82, 85, 89] and our summarization study
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9 new Thread (
10 new Runnable () {
11 @Override
12 public void run () {
13 int incr;
14 // Do the " lengthy " operation 20 times
15 for (incr = 0; incr <= 100; incr +=5) {
16 // Sets the progress indicator to a max value , the
17 // current completion percentage , and " determinate "
18 // state
19 mBuilder . setProgress (100 , incr , false );
20 // Displays the progress bar for the first time.
21 mNotifyManager . notify (id , mBuilder . build ());
22 // Sleeps the thread , simulating an operation
23 // that takes time
24 try {
25 // Sleep for 5 seconds
26 Thread . sleep (5*1000) ;
27 } catch ( InterruptedException e) {
28 Log.d(TAG , " sleep failure ");
29 }
30 }
31 // When the loop is finished , updates the notification
32 mBuilder . setContentText (" Download complete ")
33 // Removes the progress bar
34 . setProgress (0,0, false );
35 mNotifyManager . notify (id , mBuilder . build ());
36 }
37 }
38 // Starts the thread by calling the run () method in its Runnable
39 ). start ();

Figure 6.4: An example of a long statement taken from a code fragment used
in our study on summarization practices (Chapter 5). The code fragment
is from the Android API Guides [2], demonstrating the task of “displaying
a fixed-duration progress indicator.” The code fragment is reproduced with
permission under the Apache Software License, Version 2.0.
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in Chapter 5. We studied 156 summaries generated by 16 programmers, and
interviewed the programmers to ascertain the rationale behind their decision
to include a type of code unit in one summary but leave it out of others, and
why they chose to present a code unit in a certain way in a summary. With
these insights, we constructed four salience filters: the query relevant call
filter (Section 6.3.1), the call-back filter (Section 6.3.2), the control flow filter
(Section 6.3.3), and the variable-definition-use filter (Section 6.3.4). For each
selection unit, these four filters together determine a score.

More formally, each of the filter has a corresponding salience function,
saliencecall, saliencecallBack, saliencecontrolF low, and saliencedefUse. Each func-
tion takes as input a selection unit vector ~u containing selection units 1, ..., n in
a code fragment. The output is a score vector ~s, which is a vector containing
non-negative scores for selection units 1, ..., n. Konaila first sums up the scores
from the call, call-back, and the control flow filters:

~ssum = saliencecall(~u) + saliencecallBack(~u) + saliencecontrolF low(~u)

Konaila then applies the variable-definition-use filter to the sum to get the
final scores:

~sfinal = saliencedefUse(~u,~ssum)

If ~sfinal = ~0, Konaila uses a default scoring function (Appendix C). The default
function favours selection units that are signatures, contain calls, and match a
query term.

6.3.1 Query Relevant Call Filter

This filter emphasizes selecting query relevant calls in a code fragment heavy
on API calls:

116



6.3 Scoring Salient Selection Units

1 // Create a constant to convert nanoseconds to seconds .
2 private static final float NS2S = 1.0f / 1000000000.0 f;
3 private final float [] deltaRotationVector = new float [4]() ;
4 private float timestamp ;
5
6 public void onSensorChanged ( SensorEvent event ) {
7 // This timestep 's delta rotation to be multiplied by the current ←↩

rotation
8 // after computing it from the gyro sample data.
9 if ( timestamp != 0) {

10 final float dT = ( event . timestamp - timestamp ) * NS2S;
11 // Axis of the rotation sample , not normalized yet.
12 float axisX = event . values [0];
13 float axisY = event . values [1];
14 float axisZ = event . values [2];
15
16 // Calculate the angular speed of the sample
17 float omegaMagnitude = sqrt( axisX * axisX + axisY * axisY + axisZ * axisZ );
18
19 // Normalize the rotation vector if it 's big enough to get the axis
20 // (that is , EPSILON should represent your maximum allowable margin of←↩

error )
21 if ( omegaMagnitude > EPSILON ) {
22 axisX /= omegaMagnitude ;
23 axisY /= omegaMagnitude ;
24 axisZ /= omegaMagnitude ;
25 }
26
27 // Integrate around this axis with the angular speed by the timestep
28 // in order to get a delta rotation from this sample over the timestep
29 // We will convert this axis - angle representation of the delta ←↩

rotation
30 // into a quaternion before turning it into the rotation matrix .
31 float thetaOverTwo = omegaMagnitude * dT / 2.0f;
32 float sinThetaOverTwo = sin( thetaOverTwo );
33 float cosThetaOverTwo = cos( thetaOverTwo );
34 deltaRotationVector [0] = sinThetaOverTwo * axisX ;
35 deltaRotationVector [1] = sinThetaOverTwo * axisY ;
36 deltaRotationVector [2] = sinThetaOverTwo * axisZ ;
37 deltaRotationVector [3] = cosThetaOverTwo ;
38 }
39 timestamp = event . timestamp ;
40 float [] deltaRotationMatrix = new float [9];
41 SensorManager . getRotationMatrixFromVector ( deltaRotationMatrix , ←↩

deltaRotationVector );
42 // User code should concatenate the delta rotation we computed with ←↩

the current rotation
43 // in order to get the updated rotation .
44 // rotationCurrent = rotationCurrent * deltaRotationMatrix ;
45 }
46 }

Figure 6.5: A code fragment reproduced from Android API Guides [2] (used
in the summarization study in Chapter 5) with permission under the Apache
Software License, Version 2.0. The code fragment has more than half of the
lines on mathematical computations.
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Motivation

Even though method calls in general have been shown to be essential elements
in the comprehension of full programs [42, 82], there is mixed evidence on the
universal importance of method calls for the code fragment summarization task.
On the one hand, our feature comparison study (Figure 4.6) shows that the
method call feature is effective in classifying whether a code line is important
for inclusion in a summary. On the other hand, Rodeghero et al.’s eye-tracking
study [79] did not find method calls attracted significantly more eye gaze nor
fixation as compared to other code constructs during a summarization task.

What is clear is that API method calls are particularly important in code
fragments. Code fragments in accepted answers on Stack Overflow usually
contain API calls: Subramanian and Holmes’s study on these highly regarded
code fragments (21K code fragments from a set of accepted answers on Stack
Overflow) reveals 75K calls to various APIs [89]. In addition, in our context,
the importance of method calls increases when the name of the call contains a
match to a query term, as we found from summarization practices based on
query terms in Section 5.3.2. Another condition we observed from the study
regarding method calls is that calls are not important in code fragments heavy
on computations. For example, the code fragment in Figure 6.5 demonstrates
the usage of the gyroscope on an Android phone. The code fragment’s focus is
not on the API calls involved, and as such the call in line 41 is arguably not
the most important part of the code fragment.

Salience Function

The salience function of the query relevant call salience filter, saliencecall(~u),
is defined as:
~0, if

∑n

i=1 ~u.hasCallsAndConstructor[i]
n

< 20%

3 · ~u.matchesQuery +min(~3, ~u.nbrCalls) + 3 · ~u.hasConstructor, otherwise
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The feature vectors are as follows:

• ~u.hasCallsOrConstructors is a vector, where each element i is 1 or 0
depending on whether selection unit i contains a method or a constructor
call;

• ~u.matchesQuery is a vector, where each element i is 1 or 0 depending on
whether selection unit i contains an identifier that matches a query term;

• ~u.nbrCalls is a vector, where each element i is the number of method
calls (as opposed to constructor calls) a selection unit i contains; and

• ~u.hasConstructor is a vector, where each element i is 1 or 0 depending
on whether selection unit i contains a constructor call.

The idea is to assign a zero score vector unless a code fragment is API centric,
which is defined as a code fragment containing at least 20% of method or
constructor calls. The procedure to determine whether a code fragment is API
centric is based on an analysis of the hand-generated summaries and participant
interviews in the summarization study in Chapter 5. We empirically determined
that the percentage of selection units with method or constructor calls is
indicative of whether a code fragment is API centric. Using a threshold of 20%
is sufficient to filter out the code fragments that are not API centric such as the
gyroscope code fragment in Figure 6.5. Using the code fragment in Figure 6.2
as an example, it is API centric as ∑n

i=1 ~u.hasCallsAndConstructor[i] = 13
out of n = 14 selection units have a method or constructor call (i.e., all the
selection units except the method signature “public void changed(TitleEvent

event) { ... }”).
Intuitively, when a code fragment is API centric, the salience function

assigns a higher score to a selection unit that contains multiple method and
constructor calls with matches to a query term, while it assigns a lower score to
a selection unit that contains fewer calls or does not match a query term. For
the code fragment in Figure 6.2, the query is “how do I display a web page in
SWT”. The top three selection units have saliencecall score of 6 because they
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contain a matching query term (underlined below) and a constructor call, each
of these two features contributing a score of 3:

• Display display = new Display();

• final Shell shell = new Shell(display, SWT.SHELL_TRIM);

• Browser browser = new Browser(shell, SWT.NONE);

6.3.2 Call-Back Filter

This salience filter emphasizes selecting the signature of API event call-backs:

Motivation

Method signatures have been shown to be salient anchors in summarization [79],
as we reported in the related work discussion in Section 2.2. As we found from
the “Including Overriding Methods” summarization practice in Section 5.3.1,
the signature of event call-backs in a code fragment are particularly important
to include in a summary. The call-back mechanism is used by a software
library or platform to call a piece of code in the application, usually as a
reaction to asynchronous events to which an application has subscribed. The
application typically responds to this event notification by overriding specific
API methods of the library or platform. For example, onDialogPositiveClick in
Figure 6.1 taken from the summarization study is a call-back in the Android
API; a programmer has to override it and registers the call-back in order for the
Android platform to notify the application when a dialog’s positive click button
has been pressed. One participant called the inclusion of overriding methods
a “regular pattern” (Section 5.3.1). From the hand-generated summaries we
analyzed, the majority (36 out of 43) of the method declarations with an explicit
@Override tag were included in a summary by a participant (Section 5.3.1). In
contrast, user-defined methods not involved in an event call-back do not tend
to be included in the summary (Section 5.3.1).
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Input: method signature
Output: {CallBack, ¬CallBack}, {HighConf or LowConf}
1: function isCallBack

is non-static
∧ non-private

yes no

has an @Override tag
yes no

CallBack,
HighConf

has an enclosing type
yes no

enclosing type
has inheritance

yes no

CallBack,
HighConf

CallBack,
LowConf

¬CallBack,
LowConf

¬CallBack,
HighConf

end function
Figure 6.6: Is a method signature a call-back?

Salience Function

The main intuition for this salience function is that method signatures that
are event call-backs should have a high score, whereas user-defined signatures
should have a low score. With only a code fragment, not the whole program,
we can only infer without complete confidence whether a method signature
is a call-back. We constructed a call-back inference procedure that takes as
input a method signature and classifies whether it is a call-back, with either
high or low confidence. There are strong clues in two cases: First, a method
signature that is a static method or a private method can never be a call-back.
Second, a method signature with an @Override tag is a call-back with high
confidence, as annotating a method signature with the tag provides a Java
compiler a way to catch spelling mistakes, when a developer intends to override
a method from a super-class but the method does not exist. The annotation is
also meant to make it obvious when a method declaration overrides a method
in the super-class or interface. A weaker clue to inferring whether a method
is involved in a call-back is when method signature is declared public and is

121



6.3 Scoring Salient Selection Units

not declared static, but does not have the enclosing type in the code fragment.
Figure 6.6 shows the full procedure for determining whether a method signature
is a call-back.

The salience function of the call-back filter is saliencecallBack(~u), defined as:
~u.callBackV al + 10 · ~u.isAnonClassCB + 10 · ~u.isAnonClassDecl + 3 · ~u.queryBoost

The feature vectors are as follows:

• ~u.callBackV al is a vector where each element i is defined as:

10, if isHighConfCallBack(ui) = 1 and ∑n
j=1 isHighConfCallBack(uj) = 1

5, if isHighConfCallBack(ui) = 1 and ∑n
j=1 isHighConfCallBack(uj) ≥ 2

3, if isLowConfCallBack(ui) = 1 and ∑n
j=1 isLowConfCallBack(uj) ≥ 2

0, otherwise

– isHighConfCallBack(ui) returns 1 if selection unit i contains a
method signature inferred to be a call-back with high confidence
(Figure 6.6) and 0 otherwise.

– isLowConfCallBack(ui) returns 1 if selection unit i contains a
method signature inferred to be a call-back with low confidence
(Figure 6.6) and 0 otherwise.

• ~u.isAnonClassCB is a vector where an element i is 1 if selection unit i
contains a method signature inferred to be a call-back with high confidence
(i.e., isHighConfidenceCallBack(ui) = 1) and defined in an anonymous
class, and 0 otherwise

• ~u.isAnonClassDecl is a vector where an element i is 1 if selection unit i
contains an anonymous class instantiation, and 0 otherwise.

• ~u.queryBoost is a vector where ~u.queryBoost[i]=
1, if (~u.callBackV al[i] > 0 ∨ ~u.isAnonClassDecl[i] > 0) ∧~u.matchesQuery[i] = 1

0, otherwise

Intuitively, saliencecallBack assigns the highest score to a selection unit when
there is only one method signature inferred as a call-back with high confidence,
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as the signature is the single piece of important structure in the fragment.
Otherwise, the function assigns a lower score to a selection unit. For the code
fragment in Figure 6.2, the saliencecallBack score of selection unit “public void

changed(TitleEvent event) { ... }” is 15 and has a positive score from two
features:

• The unit is inferred as a call-back with high confidence (i.e.,
isHighConfCallBack = 1). Because the unit is the only call back
in the code (i.e., ∑n

j=1 isHighConfCallBack(uj) = 1), the score for
callBackV al is 10.

• The unit is in an anonymous class (i.e., isAnonClassCB = 1), contribut-
ing a score of 5.

6.3.3 Control Flow Filter

This salience filter emphasizes on control flow constructs in control flow heavy
code:

Motivation

Control flow statements are important, but not necessarily universally important
for a summary. For example, Sridhara et al.’s code-to-text summarizer [85]
considers code of the form “if(X==null) return null;” unimportant. From
our analysis of hand-generated summaries reported in Chapter 5, 65 out
of 165 of the control flow statements were deemed important enough to be
included in a summary (Figure 5.4). One case where control flow constructs are
salient is when code fragments contain a lot of computation heavy statements.
For example, Figure 6.5 has more than half of the lines on mathematical
computations and multiple control flow statements but only one API call.
In other cases where a code fragment contains multiple conditional cases,
such as an if or a switch construct, participants tended to include one of the
cases, (the “Keeping Only One Case in a Parallel Structure” summarization
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practice reported in Section 5.3.1). We observed that when the conditional
expression contains a constant, the code tends to be more relevant to a summary
(Section 5.4.2), e.g., “if (resultCode == Activity.RESULT_OK)”.

Salience Function

For this filter, the intuition is that control flow constructs are important only
when the code fragment has sufficiently many control flow constructs. We
empirically determined that two values are indicative of this intuition: the
number of units containing a control flow construct (for, if, while, switch, and
do-while) and the percentage of non-comment units within a loop (a for loop,
a while, or a do-while). We empirically determined the thresholds as follows:
when a code fragment’s number of control flow constructs is at least 3 or the
percentage of units within a loop is greater than 20%.

The salience function, saliencecontrolF low(~u) is defined as follows:
~0, if ∑n

j=1 ~u.hasCF [j] < 3 and
∑n

i=1 ~u.inCF [i]
n

≤ 20%

min(~2, ~u.nbrCallsInCF ) + ~u.constructorInCF + 2 · ~u.constantInCF − 2 · ~u.nullInCF , otherwise
where the feature vectors include the following:

• ~u.hasCF is a vector, where ~u.hasCF [i] equals to 1 or 0 depending on
whether selection unit i contains a control flow construct or not;

• ~u.inCF is a vector, where ~u.inCF [i] equals to
1, if selection unit i is not a comment and is structurally contained within a loop

0, otherwise

• ~u.nbrCallsInCF is a vector, where ~u.nbrCallsInCF [i]=
~u.nbrCalls[i], if the selection unit i contains a control flow construct

0, otherwise

• ~u.constructorInCF is a vector, where ~u.constructorInCF [i] =
~u.hasConstructor[i], if the selection unit i contains a control flow construct

0, otherwise

124



6.3 Scoring Salient Selection Units

• ~u.constantInCF is a vector, where ~u.constantInCF [i] for selection unit
i equals to

1, if i contains a constant that is not null, and a control flow construct

0, otherwise

• ~u.nullInCF is a vector, where ~u.nullInCF [i] =
0, if all of ~u.nbrOfCallsInCF , ~u.constructorCF , and ~u.constantInCF are zero

1, if the selection unit i contains a contains a null and a control flow construct

0, otherwise

Intuitively, the control flow constructs that contain multiple method calls
and constant literals (except for null literals, to avoid code such as “if(X==null)”)
have the highest score. The control flow constructs that contain fewer number of
method calls or that contain no literals have a lower score. For Figure 6.2, there
are no selection units with a control flow construct hence the saliencecontrolF low

score vector is ~0.

6.3.4 Variable-Definition-Use Filter

This salience filter emphasizes statements involved in simple intra-method
variable definition-use relationships:

Motivation

Understanding data-flow relationships in a program is essential in the compre-
hension and evolution of the code. For example, an important question asked
by programmers evolving code is “Where is this variable or data structure being
accessed?” [82, page 440]. Answering this question requires understanding of
the data-flow of a program. We have also observed this information need from
our code fragment summarization task, as one participant explicitly noted: “I
am looking where exactly the inflater object is used. This is important because it’s used
in the setView method.”
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Salience Function

There are many existing techniques for extracting data-flow relationships
in a full program [92]. Konaila uses one of the simplest types of data-flow
relationships, the relationship between a variable definition and its direct uses
(as opposed to a “def-use chain” [1, page 399]): i.e., which statement contains
the variable declaration of each variable usage. Intuitively, if a highly scoring
statement reads or writes to a variable, the score of the statements containing
the definition or uses of this variable should be increased. For example, the
query relevant call pattern (Section 6.3.1) determines that the statement “final
Shell shell = new Shell(display, SWT.SHELL_TRIM);” (lines 2-3 in Figure 6.2) is
salient. The salience of statements using the variable shell should be increased
accordingly.7

The process to obtain relationships between a variable definition and its
direct uses is called variable type binding resolution. Typically, type binding
resolution is provided by a compiler. However, because a code fragment is often
an incomplete compilation unit and is seldom a complete program, in this case
typical compilers are unable to provide this information (see Section 3.1.1). We
used Partial Program Analysis which uses heuristics to complete an AST from
the Eclipse compiler with the missing type bindings [19]. A PPA enhanced
AST indicates which variable declaration corresponds to each of the variable
uses. For example, the code fragment in Figure 6.2 contains three variables and
one formal parameter, “display”, “shell”, “browser”, and “event”, defined in
lines 1, 2, 5, and 7 respectively. A PPA enhanced AST on this code fragment
can identify the uses of these variables and parameter. Our definition-use
component uses this information to extract definition-use relationships among
the selection units.

We first obtain from the PPA procedure a list of variable declarations
including formal parameters, Vdef = (v1, ..., vx). For the code fragment in

7The decision to increase the score for both definition and uses is that we want to emphasize
if one of the code units is important.
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Figure 6.2, Vdef corresponds to the definition of variables “display”, “shell”,
“browser”, and “event.” For each variable vi ∈ Vdef , the procedure returns a
list of uses which are a set of variables Vuse_i = (vi1, ..., viy). For example, for
the variable “display” in Figure 6.2, the list of variables that “use” “display
are in “if (!display.readAndDispatch())” and “display.sleep();”. Konaila then
transforms Vdef and Vuse_1, ..., Vuse_x into a list of lists of selection units,
as follows. The i-th slot in the outer list corresponds to vi and refers to
the list of selection units each of which contains the definition of variable vi

or one of the variable uses Vuse_i. We call this list of list of selection units
UdefUses = (U1, ..., Uk). For Figure 6.2, UdefUses has four lists, each corresponds
to one of “display”, “shell”, “browser”, and “event.” For “display”, the list
contains three selection units: (1) “Display display = new Display();”, (2) “if
(!display.readAndDispatch())”, and (3) “display.sleep();”. The list for “shell”
has seven selection units, the list for “browser” has four, and the list for “event”
has two.

The salience function saliencedefUse is defined in Figure 6.7. The inputs are
UdefUses = (U1, ..., Ux), ~ssum (the score vector output of the sum of the three
prior salience functions, saliencecall, saliencecallBack, and saliencecontrolF low),
and a map from a selection unit to its ssum. For each Ui (a list of selection
units that contains the definition vi or one of the uses vi1, ..., viy), saliencedefUse

propagates the maximum salience score of any unit in the def-use list to all the
other elements in the list.

6.4 Optimization and Dependency Handling

The selection of the units to include in a summary does not exclusively de-
pend on whether an individual unit is salient (the score). In our study on
summarization practices, we found that participants took into account the
amount of space a unit occupies. When two selection units have similar values,
Konaila should select the one occupying the fewer number of lines. In addition,

127



6.4 Optimization and Dependency Handling

Input:

• UdefUses = (U1, ..., Uk): where Ui is a list of selection units each of which
contains a variable/parameter definition vi or one of its uses vi1, ..., uiy

• ~ssum: sum of saliencecall, saliencecallBack, and saliencecontrolF low

• m: maps a selection unit u to its corresponding score ssum

Output: ~sfinal: a score vector containing non-negative scores for selection
units 1, ..., n
1: function salience_defUse(UdefUse, ~ssum, m)
2: ~sfinal ← ~ssum . Initialize the scores
3: for i = 1, ..., k do . For each variable/parameter i
4: Ui = UdefUses[i]
5: smax ← maxuj∈Ui

(m.getScore(uj)) . Max score from the units in Ui

6: for uj ∈ Ui do . where j is the original index in sfinal

7: ~sfinal[j]← ~sfinal[j] + smax

8: end for
9: end for
10: return(~sfinal)
11: end function

Figure 6.7: The function saliencedefUse
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participants considered the combination of units taking coherence into account,
as opposed to simply using a greedy algorithm to select the highest scoring
units to fill the available space for the summary.

To take into account the space constraints, Konaila uses optimization that
maximizes the score of the selected set of units while limiting the length of the
set to be within L lines. Konaila also considers three types of dependencies
for the coherence of the units selected for inclusion in a summary. The first
type of dependency concerns variable definition-use relationships among the
selection units, because a variable usage is more likely to make sense with its
definition (a declaration statement or a formal parameter of a method). The
second and third types of dependencies concern structural context: a method
signature is more likely to make sense with its enclosing class signature (if it
exists); and super or this constructor calls are more likely to make sense with
their enclosing constructor, if the enclosing constructor exists.

Section 6.4.1 describes the computation of the length of a unit. Section 6.4.2
describes the optimization problem and the changes we made to the optimization
problem to handle dependencies.

6.4.1 Determining the Length

First, Konaila determines the number of lines a selection unit occupies after
applying our Java code formatting component to each selection unit. Formatting
is important for readability not only for source code in general [10], but also for
code fragments and their summaries as we found in our study of summarization
practices. As we reported in Section 5.4.4, the practice of indenting code is
essential for readability: “It’s easier to see the layers, the level of importance. You
look at [the code] from top to bottom.”P9 In addition, the practice of keeping lines
separate is desirable, as opposed to wrapping lines and putting two lines into
one; all participants kept lines separate for some of the summaries.

Our formatting component uses the Eclipse Code Style API [22], which
re-formats code according to a profile with preferences specified in an XML file
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or via the Eclipse UI. We created a profile that aggressively eliminates white
spaces and compresses the placement of curly braces and parentheses while
respecting the summarization practices regarding indentation and separate
lines. One of the preferences is for specifying the line width (in characters)
of the formatted code (Appendix D), which we use to specify W , the desired
width of the summary. Other preferences concern white spaces within Java
constructs and the placement of the braces (Appendix D).

6.4.2 Knapsack Solution and Dependency Handling

Without considering dependencies, the formulation of the Knapsack prob-
lem [17] is as follows: Given the set of candidate selection units, each with
a salience score si and a line length li, choose a subset with maximum sum
of scores within the line limit L. This formulation is the so-called “0-1 Knap-
sack” [17], the binary version of the Knapsack problem in which choosing an
item (the selection unit) is a binary decision (whether to include the item or
not, the xi’s) rather than allowing multiple copies of an item:

maximize
n∑

i=1
sixi

subject to
n∑

i=1
lixi ≤ L,

xi ∈ {0, 1}

The goal is to maximize the value (score) of the chosen items while satisfying
the line limit of the summary. We used a standard implementation [17, page
335] that uses dynamic programming to find the solution to this optimization
problem.

To handle the coherence among selection units, we do not take each selection
unit as an independent item. Instead, we combine the units involved in
dependencies as compound items and use the compound items as input to the
Knapsack problem, essentially re-defining the notion of a Knapsack “item”.
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Figure 6.8: An illustration to the change made to the Knapsack algorithm for
a code fragment

The pseudo-code for this pre-processing step to the Knapsack items is in
Figure 6.9. Intuitively, we do not allow an individual selection unit i involved in
a dependency to be defined as an individual Knapsack “item”, essentially ruling
out the option to orphan i. We construct a compound item by composing i
with a dependency parent p.

Figure 6.8 illustrates a code fragment with two dependencies, U1 (selection
unit 1 in line 1) whose dependents are selection units U2 and U4, and U3 that
has one dependent U4. Without considering dependencies, there would be five
Knapsack “items”, each corresponds to a selection unit in the example (the top
left bubble in Figure 6.8). When considering dependencies, if U2 is selected,
U1 should be considered to be selected; and if U4 is selected, at least one of U1
or U3 should be considered to be selected. More formally, when a parent p has
multiple dependents (i.e., U1 whose dependents are U2 and U4), we enumerate
the power set of the dependents (i.e., {U2,U4} is {{},{U2},{U4},{U2,U4}} -
line 4 of the pseudo-code) and compose it with p (i.e., U1) as a compound item
(yielding four compound items involving U1 in as illustrated in Figure 6.8 -
line 6 of the pseudo-code).
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Input:

• units: set of selection unit objects

– u.score: integer attribute of each u ∈ units, score of u
– u.lines: attribute of each u ∈ units, number of lines u occupies
(Section 6.4.1)

• dependencies: list of dependencies objects

– d.parent: attribute of each d ∈ dependencies, parent selection unit
of c

– d.dependents: attribute of each d ∈ dependencies, list of dependent
selection units of c

• L: desired number of lines of the summary

Output: selected ⊂ units: units for inclusion in the summary
1: function knapsackWithPreprocessing
2: compoundItems← ∅
3: for all d ∈ dependencies do
4: for all ps ∈ powerset(d.dependents) do
5: new(compoundItem)
6: compoundItem.units← ps ∪ d.parent
7: compoundItem.lines← ∑

u∈compoundItem.units
u.lines

8: compoundItem.score← ∑
u∈compoundItem.units

u.score

9: compoundItems← compoundItems ∪ compoundItem
10: end for
11: end for
12: unitsNotInDep← units \ ∪

d∈dependencies
(d.dependents ∪ d.parent)

13: allItems← compoundItems ∪ unitsNotInDep
14: selected← knapsack(allItems, L)
15: end function

Figure 6.9: Constructing the input (compound items) to encode dependencies
for the knapsack routine
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Figure 6.10: Snapshot of the web interface used in the evaluation study. The
interface presents the three summaries in a random order for each task (a task
corresponds to evaluating the three summaries for one fragment). For this task,
Summary 1 is the Baseline; Summary 2 is the Greedy summary; and
Summary 3 is the Optimized summary (Konaila). The code fragment is
reproduced from Stack Overflow with permission under the Creative Commons
License, Version 2.0.

6.5 Evaluation

To evaluate the quality of the summaries produced by Konaila, we conducted
a study with 11 participants to obtain ratings on sets of summaries triplets
generated from the same code fragments. We compared summaries produced
in three different ways: Optimization-based summarization (Konaila), Baseline
(including code units that maximally fill the given space), and Greedy search
(greedily choosing candidate selection units with the highest value). Each
participant rated 52 sets of summaries. Half of the summary sets were 3 lines
by 50 columns and the other half were 5 lines by 50 columns. Figure 6.10 shows
the web interface we designed for the study.
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The main goal of the evaluation was to determine whether Konaila could
generate effective summaries compared to a competitive baseline. We also
aimed to determine whether there was any utility in the optimization step (a
main contribution of Konaila) by comparing Konaila to the summaries without
the step. The three types of summaries generation techniques evaluated were
as follows:

Optimization: This is Konaila as described in this chapter.

Baseline: The goal was to generate a competitive baseline: summaries that
maximally filled the space. The algorithm first parsed the code to obtain
the set of selection units (Section 6.2) and then determined the number of
lines when the space was configured at width W (Section 6.4.1). The Baseline
algorithm then selected the units with the highest character per line ratio
until all available lines were filled. The baseline summaries, like the summaries
using the other two generation techniques, uses the formatting profile presented
in Section 6.4.1 and does not pack characters densely to the detriment of
readability.

Greedy: The goal was to test whether there was any utility in the optimiza-
tion step (Section 6.4.2). Like the Baseline algorithm, the Greedy algorithm
determined the selection units and length in lines for each unit. On top of this,
the Greedy algorithm uses the four salience filters to determine the salience
scores of the candidate units. With the scores and the line lengths of the
candidate units, the Greedy algorithm selects the units with the highest scores
until all available lines are. The Greedy algorithm however does not employ
optimization nor takes into account hard dependencies (e.g., Section 6.4).

Given that both comparison algorithms (Baseline and Greedy) are concep-
tually similar and competitive, if the ratings of the Optimized summaries are
better than that of the Baseline or Greedy summaries, we can conclude that
Konaila’s optimization step has value.
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6.5.1 Data: Code Fragment Selection

We chose code fragments from Stack Overflow for two Java technologies:
Hibernate and Spring. The motivation behind choosing these technologies was
that they are popular Java technologies and are different enough from the set of
code fragments we selected for the development of the summarization algorithm
(the Eclipse official frequently asked questions [23] and Android official API
Guides [2]).

In addition, we wanted to choose representative code fragments as the
population of the code fragments from which we selected a sample for the
experiment. Because one of our motivating applications was for presenting
search engine results, we wanted the code fragments in the population to be
the ones that a search engine would be likely to return. We thus chose the
population of code fragments as follows: We took candidate code fragments
extracted from Stack Overflow threads created between September 1, 2008 and
March 31, 2015 with the tag “hibernate” or “spring”, in addition to the tag
“java”. We selected a window of time large enough so that we could capture
high scoring questions that were asked in the past. During that period, there
were 27,525 threads created with at least one code fragment enclosed in <code>

tags. These 27,525 threads contained a total of 64,443 code fragments.

Close to 90% of these code fragments (57,261) satisfied the code fragment
grammar we illustrated in Section 6.2. Of the remaining 7182 code fragments
that did not satisfy the grammar, 1916 were XML fragments (3% out of 64,443).
For the rest (7% out of 64,443) it was not immediately clear the reasons behind
the rejection by the grammar; a random sample of 20 from the 7% of code
fragments revealed the following types of fragments: malformed Java code
fragments (3), invalid XML (9), JavaScript (2), output console messages (2),
and a mix of Java and either XML or console messages (3).

From the 27,525 threads, we further eliminated 9,313 threads with all “bad”
answers, i.e., threads whose highest scoring answer was 0. From each of the
remaining 18,212 threads, we selected one code fragment, the first one from the
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highest scoring answer. In the end, we had 4527 code fragments, the population
to be sampled for generating the evaluation tasks.

6.5.2 Study Set-Up

For each code fragment, we presented a participant with the task of evaluating
the three summary versions. The three summaries were displayed on a web
interface horizontally (see Figure 6.10). The top part of the interface is the
code fragment extracted from a Stack Overflow answer post (as explained in
Section 6.5.1). On top of the code fragment is the title of the corresponding
Stack Overflow question post.8 The middle part presents the three summaries
in a random order for each task. For this task in Figure 6.10, “Summary 1” is
the Baseline; “Summary 2” is the Greedy summary; and “Summary 3” is the
Optimized summary (Konaila).

We asked the participants to rate each summary according to the following
statement: “Given the limited space, this summary captures as much as
possible of the original elements of the code related to the Stack Overflow
question, while remaining readable.” The ratings were on a Likert scale with
four options: Completely Agree, Generally Agree, Generally Disagree, and
Completely Disagree.9 We asked the participants to provide a Likert rating
per summary rather than to order the three summaries because we wanted to
gather the individual ratings in addition to the ordering.

6.5.3 Participants

Of the eleven participants, seven were professional programmers and four were
students. One of the professional programmer had submitted patches to both
the Hibernate and Spring projects.

For ten of the participants, we randomly assigned 52 fragments from the
4527 fragments to the participants in a way that ensured that the participants’

8The full text of the Stack Overflow question post was not available to the raters.
9As recommended by Fowler [25].
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Figure 6.11: Distribution of the Likert ratings
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Figure 6.12: Distribution of the Likert ratings between the 3x50 and 5x50
summaries for the Konaila summaries

API knowledge of Hibernate and/or Spring matched the code fragments, that
half of the summaries were of 3x50 size and the other half of 5x50 size, and
that two participants rated a selected fragment (one for the 3x50 size and the
other for 5x50). We set aside one participant for the agreement assessment as
described in Section 6.5.5.

We required participants to have one year or more of Java programming
experience, and to have at least looked at either the Hibernate or Spring API.
The median number of years of Java experience was 4 and the average was 4.73.
One participant only had experience with Hibernate, three only with Spring,
and seven with both. We recruited the participants from local professional
programmer meet-up groups and companies, the McGill School of Computer
Science, and through personal contacts. We compensated the participants with
$25 CAD.
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6.5.4 Results

After the completion of the data collection, we realized that short code examples
almost always generated identical summaries. Therefore, we eliminated the
code fragments with fewer than ten non-empty lines from the results from the
input pool, leaving us with 364 evaluation tasks (from 520 tasks). The median
length of the input fragment was 14 lines, while the mean was 18.5 lines long
and standard deviation was 10.3.

Figure 6.11 presents the distribution of the Likert ratings as a stacked
bar chart. We observe that according to raters 52.1% of Konaila’s summaries
captured as much as possible the original elements of the code related to the
Stack Overflow question while remaining readable. Even though 52.1% may
seem a marginal proportion above half, we have to interpret this number with
the consideration that summarization evaluation is an inherently subjective
and complex task.

The median rating of the Optimized summaries was Generally Agree,
whereas for Baseline and Greedy summaries, the median ratings were both
Generally Disagree. To check whether this rating difference was statistically
significant, we used a Wilcoxon signed-rank test. The test is non-parametric
and appropriate for ordinal data such as Likert ratings. The null hypothesis
is that there is no rating difference between the Optimized-Baseline summary
pairs. For each Optimized-Baseline summary pair i, the computation involves
taking the difference δi in the ratings, and then ranking the differences for
all the pairs. The null hypothesis is that the rank of the median δ is equal
to 0. The δ would have the largest value if the Optimized summary’s rating
were Completely Agree and the Baseline summary’s rating were Completely
Disagree; and the smallest if the ratings of the two summaries were flipped.
The ranks of tied δ’s were replaced by the average of the ranks of the ties. We
eliminated pairs of summaries that were the same because participants did not
need to make a comparison decision; including such pairs would wrongly bias
the results towards the null hypothesis. We only included the ratings from
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Figure 6.13: For this task, Summary 1 was the Greedy summary; Sum-
mary 2 was the Baseline; and Summary 3 was the Optimized summary
(Konaila).

the ten participants but not the eleventh one from the agreement assessment
because including that participant would introduce repeated measures of the
same item in the test data.

Results showed that the median rank difference was statistically significantly
greater than 0 for the Optimized versus the Baseline summaries (p = 0.0211),
meaning that the ratings on the Optimized summaries were statistically better
than the corresponding Baseline summaries. For the Konaila versus Greedy
summaries, the median rank difference was again statistically significantly
greater than 0 (p = 0.0489). For the Greedy versus Baseline summaries the
null hypothesis was not rejected, meaning that these summary pairs were not
significantly different in terms of the ratings.

This is a promising result: participants’ ratings on the Optimized summaries
were overall better than the Baseline summaries. However, using the Greedy did
not significantly improve the quality of the of the summaries. This demonstrates
the utility of the optimization step and taking into account the context of the
selection units, Section 6.4.2) of the summarization algorithm.

To compare ratings among the two sizes on the Optimized summaries
(Figure 6.12), we again used a Wilcoxon signed-rank test to determine whether
the median rank of the ratings on 5x50 summaries are statistically significantly

139



6.5 Evaluation

better than the median rank of the ratings on the 3x50s. The test showed
that for the baseline summaries, 5x50 sizes were statistically significantly better
ratings than the 3x50 ones (p = 0.0125). While it is not surprising to observe
that larger summaries are better than smaller ones, that larger summaries
should have better quality than small ones, it was worth-while to verify that
the code summarization algorithm behaved according to intuitions from text
summarization [33].

The screen-shot from Figure 6.10 shows an example in which the Konaila
summary (Summary 3) had a higher rating than the Baseline (Summary 1)
by two raters (one from the ten participants and the other one being the
“agreement” rater which will be described in Section 6.5.5). The Baseline
summary
1 final DocumentBuilder builder =
2 factory . newDocumentBuilder ();
3 final XPathExpression expr =
4 xpath . compile ("/ sitemesh / mapping ");
5 System .out. println (node);

contains three code units that are unrelated, whereas the Konaila summary
1 final XPathExpression expr = xpath
2 . compile ("/ sitemesh / mapping ");
3 Object node = expr. evaluate (doc ,
4 XPathConstants .NODE);

demonstrates the utility of the variable definition-use dependency for generating
a coherent sequence of units, i.e., the definition and use of the variable expr.

Figure 6.13 demonstrates another example where two raters both judged
the Konaila summary (Summary 3) as better than the Baseline summary
(Summary 2). The Konaila summary
1 PreparedStatement stmtUpdate =
2 conn. prepareStatement (" UPDATE foo"...);
3 for(int id = 0; id < 10; id ++) {
4 stmtUpdate . setInt (2, id);
5 int rows = stmtUpdate . executeUpdate () ;}

demonstrates that the control flow salience filter was able to correctly assert
the importance of the loop for the summary.
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6.5.5 Agreement

To investigate how much different participants agree or disagree on the summary
ratings, we asked the eleventh participant to perform evaluation tasks that
overlapped with the other ten participants in the following way:

We randomly selected 52 evaluation tasks from the pool of tasks performed
by the ten participants. The resulting tasks consisted of a mix of 27 3x50
and 25 5x50 summaries. Of the 52 code fragments, 24 were Hibernate and
28 Spring code fragments. This eleventh participant also used the same web
interface as the other ten participants to complete the 52 evaluation tasks.

For each code fragment and the three corresponding summaries, we con-
verted the ratings into two pair-wise comparisons: whether the ratings of
the Optimized summaries were better or the same than the corresponding
Baseline summary, and similarly for Optimized vs. Greedy summaries. We
tabulated these numbers into a 2x2 contingency table, with each dimension
distinguishing whether the rating of an Optimized or a Greedy summary was
better or the same as the corresponding Baseline summary. Using this defi-
nition, the agreement between the first participant with the rest of the ten
participants had a Cohen’s Kappa of 0.465 [16]. The level of agreement of a
Kappa between 0.4 and 0.6 is considered a moderate agreement [94]. Given
the inherent subjectivity in summarization, we were satisfied that this value
indicated reasonable reliability for the results.

6.6 Chapter Summary

In this chapter, we reported on Konaila, an optimization-based algorithm
that makes use of four salience filters motivated from our formative research.
Based on 364 summaries rated by ten participants, Konaila’s summaries were
statistically significantly better at capturing the original elements of the code
related to the Stack Overflow question while remaining readable, compared to
a competitive baseline that included code units that maximally fill the given
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space. In addition, the optimization step is an essential part in the effectiveness
of Konaila’s summaries. The contribution of this chapter is that an approach
such as Konaila, based on the use of meaningful code units, a two-dimensional
formulation, simple-to-compute features (based on code constructs, the overlap
with the given query, and simple variable definition-use analysis. We observed
that raters agreed that these summaries captured the essential elements of the
original code.
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Chapter 7
Conclusion

Code examples are important in software development because of their ability
to concretely demonstrate a solution and their ubiquity in both formal doc-
umentation and forums on the web. The motivation for summarizing code
examples, or more generally, code fragments, is to enable their more effective
use, by generating code fragment summaries that can benefit scenarios such
as providing cues for long fragments in a documentation index or displaying
search results. The code fragment summaries we generate can replace those
summaries that treat code as text from search engines (e.g., Figure 1.3) and
Stack Overflow (e.g., Figure 1.4), and ineffective summaries from code search
engines (e.g., Figure 1.5).

In this dissertation, we presented research in code fragment summarization
that makes three contributions to the field of software engineering. The first
contribution is the lessons learned from a case study on the generation line-based
summaries using a supervised machine learning approach. We had relative
success in using a combination of features that take advantage of the syntactic
structure of the code and the query. In addition, we found three limitations
in the problem formulation and the approach: the limitation in using line
granularity; the difficulty in obtaining data; and limitations on features local
to a line without considering dependencies among different parts of the code.
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The second contribution is the catalog of summarization practices consisting
of three types of selection practices and five types of presentation practices,
based on empirical evidence on how human summarize code. The practices
reinforce the importance of the syntactic structure and the query in the selection
of summary content. The practices also reveal that generating summaries is not
only about shortening the code but also about making it compilable, readable,
and understandable.

The final contribution is the design, implementation, and evaluation of an
optimization-based approach for constructing summaries constrained in both
height and width. We based the design decisions on the lessons learned from
the case study and the catalog of summarization practices from the empirical
study:

• We formulated the summaries to respect a novel width constraint in the
summarization problem formulation that took into account the impor-
tance of readability as found in the empirical study.

• Due to the limitations of line-granularity and together with insights from
the summarization practices, we defined selection units with a granularity
roughly at the code statement level. These units were our atomic code
units for summarization.

• Given the difficulty in obtaining training data and the inherent subjec-
tivity in the summarization problem, we devised a rule-based approach
that does not depend on data.

• We employed syntactic- and query-based features, motivated by the
success of this combination of features demonstrated by the case study.
In addition, Konaila uses a feature that model dependencies of the
selection units, specifically, variable definition-use dependencies.

With this design, we implemented and evaluated Konaila. The summaries were
statistically significantly better at capturing the original elements of the code
related to the Stack Overflow question while remaining readable, compared to

144



7.1 Future Work

a competitive baseline that included code units that maximally fill the given
space. In addition, the optimization step is an essential part in the effectiveness
of Konaila’s summaries.

Beyond these three contributions, this dissertation also provides a broader
perspective of code fragment summarization via the description of five dimen-
sions in the design space of code summarization.

7.1 Future Work

We envision future work both in our specific research and in the general area
of code fragment summarization.

Machine Learning in Konaila

One immediate future work idea on Konaila would be to use a machine learning
approach in two places in the Konaila algorithm. The first one would be
to learn from data for what conditions a summarization filter (Section 6.3)
is applicable to an code fragment. For example, we only apply the query
relevant call summarization pattern when a code fragment as API centric,
i.e., when 20% of the selection units contain method or constructor calls. To
learn the thresholds, we would need a corpus of code fragments where each
code fragment is annotated with whether or not a salience filter is applicable.
A data-driven approach could also help in determining the thresholds in the
salience functions (Section 6.3). For this problem, we would need to collect a
corpus of original-summary pairs of code fragments. The granularity would be
at the selection unit level (Section 6.2), rather than at the line level as used in
the case study. The particular field of machine learning that could be useful is
preference learning [34].
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Experimentation in an Application Context

External validity of code fragment summaries needs to be appraised in the
context of a deployed application. Additional validation could involve a con-
trolled experiment where half of the participants are assigned to perform
programming-related tasks with Konaila’s code fragment summaries (i.e., the
treatment group), while the other half of the participants are assigned to use the
baseline summaries (i.e., the control group). Some examples of programming-
related tasks include selecting relevant code examples from a search engine
result page modified with code fragment summaries, and selecting a relevant
code example from a document index enhanced with code fragment summaries.
The efficacy of each group can be measured using the task completion time, the
amount of information needs satisfied by the summary, and user satisfaction.
With these experiments we can gain a better understanding on whether code
fragment summaries are useful in a more realistic application scenario.

Inherent Difficulty in Summarization

Evaluating summaries is a difficult problem because the notion of correctness
of a summary is elusive. In computational linguistics, the evaluation criterion
of certain problems (e.g., machine translation [70]) can be defined relatively
more precisely, while in text summarization, it is difficult to obtain reliable
human judgment on which content should be included in a summary [49].
To alleviate this problem in text summarization, the notion of correctness is
typically constructed via summary lines more agreed upon by the annotators.
Similarly, in software engineering, the evaluation criterion of certain problems
is more precise than others. For example, there is a ground truth when it comes
to whether a method causes a crash. There is no need to consult multiple
annotators.

In three of our experiments (Sections 4.3 to 4.5), the notion of correctness we
used was the gold standard summaries which consist of lines that were marked
as in-summary by at least n annotators. In our experiments, n was two out of
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the total of four annotators (Section 4.1.1). However, this definition assumes
that a code fragment has a single universally correct summary. The moderately
low agreement among the annotators suggests a different assumption on the
correctness of a summary: no single correct summary exists. Rather, each
annotator’s version of the summary is correct. This issue has been recognized in
text summarization [67]: experiments have shown that the human summaries
themselves scored poorly when the correctness is defined by the other three of
the four annotators. Correspondingly, pyramid precision was was proposed as
a metric [68]. Pyramid precision assumes that there is no single best model
and weighs more agreed upon units more heavily than less agreed upon units.
We used this metric in one of the experiments (Section 4.6.2). Initial results
found that pyramid precision had a linear relationship with R-precision. This
result needs to be expanded, replicated, or refuted in future work.

Building on this realization, one line of future work is to ascertain which
evaluation metrics for code fragment summarization are reliable. Do evaluation
metrics in text summarization reliably measure the quality of code fragment
summaries? What are the strength and weaknesses of these metrics? To
adequately interpret results from a summarization experiment, researchers in
the field of software engineering need to recognize the inherent subjectivity in
the code fragment summarization task.

Personalization

When attempting to quantify the correctness of a summary using an oracle
generated by multiple annotators, the conventional treatment is that there is
only one correct summary which uses a set of summary lines more agreed upon
by the annotators. However, if we assume that each annotator’s version of the
summary is correct, a better summarizer would be one that personalizes the
summary for each individual. The personalization direction is also apparent
from our empirical study of summarization practices. Participants had the
human reader in mind, for example, by including code deemed easy to miss
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by the reader and excluding code deemed obvious assuming the reader had
previous knowledge of the API (Section 5.3.3). Incorporating the cognitive
model of a reader into a summarizer is a promising area of future work.

The implementation of systems taking into account this cognitive model
involves building a representation that captures the knowledge of the human
themselves. Our book chapter [101] describes building such a representation,
called developer profiles. Using expertise modeling, a developer profile can
capture code deemed easy to miss and code deemed obvious. Existing measures
on expertise—specifically, API-related expertise—of a programmer are mostly
based on the number of times an API method has been used in the programmer’s
code. This information is then used for recommending the right programmer
with a desired expertise [27, 52, 60, 104]. To identify which programmer added
or modified an API method, such algorithms typically use source code version
history to see which programmer added, deleted, or modified which API method
call to the client source code.

Comparing Code-to-Code Summarization with Code-to-Text

Is the format of code fragment ultimately the optimal output format? One
interesting direction is to compare the efficacy of code fragment output versus
textual output (e.g., code comments), when summarizing a given code fragment.
In which usage scenarios are a code fragment output more effective, and in
which scenarios are a textual output more effective? Such questions were
also central in experiments comparing whether a visual representation or a
textual representation is more effective in search engine results (e.g., [4]), or a
combination of text and image thumbnails [90, 99].

There is some evidence that a mix of code and text is desirable. From the
empirical study on summarization practices, we saw that when programmers
were asked to shorten the code, participants employ natural language text.
In the shortening method declarations practice (Section 5.4.2), we observed
summaries with both code and natural language. Rastkar et al. [73] found
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some success in summarizing a commit using a combination of code elements
and natural language (Section 5.5.3). The patterns found in their summaries
include listing the method declarations changed in a commit and using lexical
aggregation (a way to summarize a list of elements with a few words rather
than explicitly listing the methods [75]) to describe a commit. For example,
“all of the methods involved in implementing ‘Undo’ are named undo” [73] is an
example of lexical aggregation. We observed both patterns (listing and lexical
aggregation) in our empirical study (Figure 5.5). This mix of different media
(code and text) is also related to work in natural language generation that
combines graphics and text [95].

7.2 Closing Remark

Given code examples are sought-after, effective, and abundant on the web,
there is more need than ever for programmers to search for these code exam-
ples effectively. While searching for images on Google Images 1 we can take
advantage of image thumbnails in the search results and while searching for
videos on You Tube 2 we can take advantage of video snapshots. There is
limited knowledge on how to summarize code examples, or code fragments in
general. Our research in code fragment summarization is a step towards this
direction that I believe will ultimately benefit programmers working with code
examples.

1http://images.google.com/, or any on-line image search service
2http://www.youtube.com, or any an on-line video hosting service
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Appendix A
Changes to the Java Grammar to Parse

Code Fragments

We made two types of changes to the Java grammar to handle code fragments.
First, we augmented the entry point for Java code fragments from Compilatio-
nUnit to MethodDeclaration, BlockStatements, ClassBodyDeclaration, etc. The
following is the initial production rule we added to the Java grammar:

javaFragment // - The entry point for Java code fragments
: compilationUnit // - The usual Java entry point
| methodDeclaration
| blockStatements
| classBodyDeclaration *
| classBodyDeclaration * blockStatements
| switchBlockStatementGroup *;

We also added ellipses of different lengths (from length of two to four, i.e.,
“..”, “...”, “....”) as valid tokens in three places, as a blockStatement, as a
classBodyDeclaration, and as a body in an if statement (Figure A.1).
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blockStatement
: localVariableDeclarationStatement
| statement
| typeDeclaration
| ellipsisToken // Added to handle Java code fragments
;

classBodyDeclaration
: ';'
| 'static '? '{' blockStatements '}'
| memberDeclaration
| ellipsisToken // Added to handle Java code fragments
;

ifStatement
: 'if ' parExpression ( ifBody )? ('else ' ( elseBody ))? // Made ifBody ←↩

and elseBody optional for Java code fragments
;

ellipsisToken
: '.... '
| '... '
| '.. '
;

Figure A.1: Three production rules that allow ellipses
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Appendix B
Definition of Selection Units

We presented a definition of a selection unit as one of the following Java
constructs in Section 6.2.2:

• a statement; when a statement contains a body, for example, a block or a
single statement in an if statement, the unit is the statement excluding
the content of the body;1

• method signature, type signature, interface signature;

• a field declaration, a package declaration, or an import declaration;

• a comment; or

• an anonymous class creation, a method invocation or a constructor
invocation sub-divided from a statement that spans multiple lines.

In this appendix, we first describe in Section B.1 the parent reference of
a selection unit. We then expand on the definition for constructs with a
body (Section B.2), and provide a description for the sub-division algorithm
(Section B.3).

1We used a place-holder, ..., to represent the body as we exclude it.
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B.1 Parent Reference

B.1 Parent Reference

For each selection unit, we maintain a reference to the immediate syntactically
enclosing unit. For example, the unit “String action = intent.getAction();”
(line 3 in Figure B.1) has a reference to the enclosing unit “public
void onReceive(Context context, Intent intent) { ... }” (lines 2 and 11)
which in turn has a reference to “BroadcastReceiver mUsbReceiver = new

BroadcastReceiver() { ... };” (lines 1 and 12).

B.2 Constructs with a Body

For statements with a body (control flow statements, synchonized statements,
and try statements) or signatures, the selection unit is defined as the header
part of the construct, excluding the body. When such a construct is in one line,
we keep it the same unit (e.g., try { Thread.sleep(1000); } catch (Exception

e) { }). We use a place-holder, “...” to represent the body that is excluded.
The following nine constructs always contain a body enclosed in brackets:

• TypeSignature: typeSignatureHeader ’{’ ... ’}’

• InterfaceSignature: interfaceSignatureHeader ’{’ ... ’}’

• MethodSignature: methodSignatureHeader ’{’ ... ’}’ (e.g., Figure B.2,
selection units #2) | methodSignatureHeader ’;’ (for interface method
declaration)

• ConstructorSignature: constructorSignatureHeader ’{’ ... ’}’

• SwitchWrapper: switchHeader ’{’ ... ’}’

• TryWrapper: tryHeader ’{’ ... ’}’

• CatchWrapper: catchHeader ’{’ ... ’}’

• FinallyWrapper: finallyHeader ’{’ ... ’}’

• SynchronizedWrapper: synchronizedHeader ’{’ ... ’}’
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B.2 Constructs with a Body

1 BroadcastReceiver mUsbReceiver = new BroadcastReceiver () {
2 public void onReceive ( Context context , Intent intent ) {
3 String action = intent . getAction ();
4
5 if ( UsbManager . ACTION_USB_ACCESSORY_DETACHED . equals ( action )) {
6 UsbAccessory accessory = ( UsbAccessory ) intent .←↩

getParcelableExtra ( UsbManager . EXTRA_ACCESSORY );
7 if ( accessory != null) {
8 // call your method that cleans up and closes ←↩

communication with the accessory
9 }

10 }
11 }
12 };

Figure B.1: A code fragment from the Android Official Guide demonstrating
“Terminating communication with an accessory”

1 BroadcastReceiver mUsbReceiver = new BroadcastReceiver () {...};
2 public void onReceive ( Context context , Intent intent ) {...}
3 String action = intent . getAction ();
4 if ( UsbManager . ACTION_USB_ACCESSORY_DETACHED . equals ( action )) {...}
5 UsbAccessory accessory = ( UsbAccessory ) intent . getParcelableExtra (←↩

UsbManager . EXTRA_ACCESSORY );
6 if ( accessory != null) {...}
7 // call your method that cleans up and closes communication with the ←↩

accessory

Figure B.2: Selection units (each unit residing on a separate line) from Fig-
ure B.1

The following five constructs have a body that can be a block or a single
SimpleStatement:

• IfWrapper: ifHeader ( ’{’ ... ’}’ | ... ) (e.g., Figure B.2, selection units
#4 and #6)

• ElseWrapper: elseHeader ’( ’{’ ... ’}’ | ... )

• ForWrapper: forHeader ( ’{’ ... ’}’ | ... )

• WhileWrapper: whileHeader ( ’{’ ... ’}’ | ... )

• DoWhileWrapper: doWhileHeader ( ’{’ ... ’}’ | ... ) doWhileFooter ’;’
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B.3 Sub-division Algorithm

1 IEditorDescriptor desc = PlatformUI . getWorkbench ().
2 getEditorRegistry (). getDefaultEditor (f. getName ());

Figure B.3: A statement extracted from a code fragment demonstrating “How
do I open an editor programmatically”

1 IEditorDescriptor desc = ... . getEditorRegistry (). getDefaultEditor (...) ;
2 PlatformUI . getWorkbench ()
3 f. getName ()

Figure B.4: Selection units extracted from Figure B.3

B.3 Sub-division Algorithm

We use the following algorithm to break down a selection unit s into smaller
selection units in the following conditions.

Sub-dividing a statement with an anonymous class creation: When s contains
an anonymous class creation a that starts on the same line as s, the algorithm
considers s and a as one unit (e.g., Figure 6.4, line 9). On the other hand,
when s contains a that is on a subsequent line, the algorithm considers s as a
separate unit from a. For example, for the anonymous class creation that spans
lines 10-37 in Figure 6.4, we create a separate selection unit new Runnable() {

... }; whose parent is the SimpleStatement spanning lines 9-39 in Figure 6.4.

Sub-dividing a statement with a method or constructor call: We create a
separate selection unit (CallUnit for a method call and ConstructorUnit for a
constructor call) from s if:

• the call spans more than one line;
• the enclosing statement (if it exists) contains more than two calls; or
• there is an enclosing call.

For the statement in Figure B.3, all four calls in the statement are candidates.
We did not create four selection units however, if a candidate begins and ends
on the same line (such as the call to getDefaultEditor and getEditorRegistry).
Figure B.4 shows the three selection units we generated from Figure B.3.
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Appendix C
Predetermined Scores When There are

No Salient Candidates

The default function takes as input a selection unit, determines whether a
selection unit contains each of the following constructs, and sums up scores all
the applicable constructs. If the sum of is negative, the final score is 0.

CatchWrapper -10
ImportDeclaration -10
PackageDeclaration -10
TryWrapper -10
ModifierPrivate -5
ElseWrapper -3
NullLiteral -2
FinallyWrapper 0
Comment 0
Assignment 0
Return 0
BooleanLiteral 0
FloatLiteral 0
IntegerLiteral 0
ExceptionDeclarationContext 0
FieldDeclaration 0
SimpleStatement 0
SynchronizedWrapper 0
ForWrapper 1
IfWrapper 1
ConstructorArray 1
CharacterLiteral 1
ModifierAnnotationOverride 1
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ModifierProtected 1
ModifierStatic 1
WhileWrapper 1
StringLiteral 2
ModifierFinal 2
LocalVariableDeclarationStatement 2
SwitchLabel 2
SwitchWrapper 2
ModifierPublic 3
ConstructorSignature 5
Extends 5
Implements 5
Constructor 9
IdentifierLiteral 10
CallCount 10
IdentifierMatchedQueryTerm 10
AnonymousClassCreation 10
MethodSignature 10
TypeSignature 10
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Appendix D
Changes to the Eclipse Formatter Profile

Eclipse Code Style API [22] allows users to change the code formatter prefer-
ences. We control the width of the summary by changing the following entry
in the XML file that stores the preferences:

<setting id="org. eclipse .jdt.core. formatter . lineSplit " value ="50"/>

In addition, to create a formatter profile we referred to in Section 6.4.1, we
changed the following entries from the default profile:

<setting id="org. eclipse .jdt.core. formatter .←↩

insert_new_line_in_empty_annotation_declaration " value ="do not insert "←↩

/>
<setting id="org. eclipse .jdt.core. formatter .←↩

insert_new_line_after_annotation_on_local_variable " value ="do not ←↩

insert "/>
<setting id="org. eclipse .jdt.core. formatter . blank_lines_after_package " ←↩

value ="0"/>
<setting id="org. eclipse .jdt.core. formatter . blank_lines_before_new_chunk " ←↩

value ="0"/>
<setting id="org. eclipse .jdt.core. formatter . blank_lines_before_member_type←↩

" value ="0"/>
<setting id="org. eclipse .jdt.core. formatter . comment .←↩

clear_blank_lines_in_block_comment " value ="true"/>
<setting id="org. eclipse .jdt.core. formatter .←↩

insert_new_line_in_empty_type_declaration " value ="do not insert "/>
<setting id="org. eclipse .jdt.core. formatter . indentation .size" value ="2"/>
<setting id="org. eclipse .jdt.core. formatter . alignment_for_assignment " ←↩

value ="16"/>
<setting id="org. eclipse .jdt.core. formatter . tabulation .char" value =" space "←↩

/>
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<setting id="org. eclipse .jdt.core. formatter . blank_lines_before_method " ←↩

value ="0"/>
<setting id="org. eclipse .jdt.core. formatter .←↩

insert_new_line_in_empty_method_body " value ="do not insert "/>
<setting id="org. eclipse .jdt.core. formatter .←↩

alignment_for_method_declaration " value ="16"/>
<setting id="org. eclipse .jdt.core. formatter .←↩

indent_switchstatements_compare_to_switch " value ="true"/>
<setting id="org. eclipse .jdt.core. formatter .←↩

insert_new_line_after_annotation_on_field " value ="do not insert "/>
<setting id="org. eclipse .jdt.core. formatter . tabulation .size" value ="2"/>
<setting id="org. eclipse .jdt.core. formatter .←↩

insert_new_line_in_empty_enum_constant " value ="do not insert "/>
<setting id="org. eclipse .jdt.core. formatter . comment .←↩

clear_blank_lines_in_javadoc_comment " value ="true"/>
<setting id="org. eclipse .jdt.core. formatter .←↩

insert_space_after_closing_paren_in_cast " value ="do not insert "/>
<setting id="org. eclipse .jdt.core. formatter .←↩

number_of_empty_lines_to_preserve " value ="0"/>
<setting id="org. eclipse .jdt.core. formatter .←↩

insert_new_line_after_annotation_on_type " value ="do not insert "/>
<setting id="org. eclipse .jdt.core. formatter .←↩

put_empty_statement_on_new_line " value =" false "/>
<setting id="org. eclipse .jdt.core. formatter . comment . line_length " value ="50←↩

"/>
<setting id="org. eclipse .jdt.core. formatter .←↩

blank_lines_between_import_groups " value ="0"/>
<setting id="org. eclipse .jdt.core. formatter .←↩

blank_lines_between_type_declarations " value ="0"/>
<setting id="org. eclipse .jdt.core. formatter . blank_lines_before_imports " ←↩

value ="0"/>
<setting id="org. eclipse .jdt.core. formatter .←↩

insert_new_line_in_empty_anonymous_type_declaration " value ="do not ←↩

insert "/>
<setting id="org. eclipse .jdt.core. formatter .←↩

use_tabs_only_for_leading_indentations " value ="true"/>
<setting id="org. eclipse .jdt.core. formatter .←↩

alignment_for_arguments_in_annotation " value ="16"/>
<setting id="org. eclipse .jdt.core. formatter . alignment_for_enum_constants " ←↩

value ="16"/>
<setting id="org. eclipse .jdt.core. formatter . insert_new_line_in_empty_block←↩

" value ="do not insert "/>
<setting id="org. eclipse .jdt.core. formatter . blank_lines_after_imports " ←↩

value ="0"/>
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