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ABSTRACT

Web API specifications are machine-readable descriptions of APIs.
These specifications, in combination with related tooling, simplify
and support the consumption of APIs. However, despite the in-
creased distribution of web APIs, specifications are rare and their
creation and maintenance heavily rely on manual efforts by third
parties. In this paper, we propose an automatic approach and an
associated tool called D2Spec for extracting significant parts of
such specifications from web API documentation pages. Given a
seed online documentation page of an API, D2Spec first crawls all
documentation pages on the API, and then uses a set of machine-
learning techniques to extract the base URL, path templates, and
HTTP methods – collectively describing the endpoints of the API.

We evaluate whether D2Spec can accurately extract endpoints
from documentation on 116webAPIs. The results show that D2Spec
achieves a precision of 87.1% in identifying base URLs, a precision
of 80.3% and a recall of 80.9% in generating path templates, and a
precision of 83.8% and a recall of 77.2% in extracting HTTPmethods.
In addition, in an evaluation on 64 APIs with pre-existing API spec-
ifications, D2Spec revealed many inconsistencies between web API
documentation and their corresponding publicly available specifi-
cations. API consumers would benefit from D2Spec pointing them
to, and allowing them thus to fix, such inconsistencies.
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1 INTRODUCTION

Web Application Programming Interfaces (web APIs or simply APIs
from hereon) provide applications remote, programmatic access to
resources such as data or functionalities. For application developers,
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the proliferation of such APIs provides tremendous opportunities.
Applications can take advantage of vast amount of existing data,
like location-based information from the Google Places API1, hook
into established and global social networks, using for example
Facebook’s2 or Twitter’s3 APIs, or outsource critical and hard to
implement functionalities, such as payment processing using the
Stripe API.4

To consumeAPIs, though, developers face numerous challenges [30]:
The need to find and select the APIs meeting their requirements,
both from a functional and non-functional point-of-view [28]. They
need to familiarize with the capabilities provided by an API and
how to invoke these capabilities, which typically involves studying
HTML-based documentation pages that vary across APIs. Com-
pared to using library APIs, for example of a Java library, consumers
of web APIs do not have interface signatures readily available or
accessible via development tools. In addition, web APIs are under
the control of independent providers who can change the API in a
way that can break client code [13, 17]. Even for supposedly stan-
dardized notions such as the APIs’ URL structures, HTTP methods,
or HTTP status codes, the semantics and implementation styles
differ across APIs [22].

One attempt to mitigate these problems is to describe APIs in a
well-defined way using web API specifications.5 Web API specifi-
cation formats, like the OpenAPI Specification [5] or the RESTful
API Modeling Language (RAML) [7], describe the URL templates,
HTTP methods, headers, parameters, and input and output data
required to interact with an API. Being machine-understandable,
web API specifications are the basis for various tools that support
API consumption: specification are input for generating consis-
tent API documentation pages6, they are used to catalog APIs7, to
auto-generate software development kits that wrap APIs in vari-
ous languages8, or even to statically check client code for possible
errors [29].

1https://developers.google.com/places
2https://developers.facebook.com/docs/graph-api
3https://developer.twitter.com/en/docs/api-reference-index
4https://stripe.com/docs/api
5 We acknowledge that the term specification sometimes means a much more compre-
hensive description of an application’s or system’s syntax and semantics. Even though
web API specifications like OpenAPI Specification do not provide any semantics, we
use the term here nonetheless due to its prevalence in the web API community.
6e.g., https://editor.swagger.io/ or https://github.com/Rebilly/ReDoc
7e.g., https://apiharmony-open.mybluemix.net/ or https://any-api.com
8e.g., https://swagger.io/swagger-codegen or https://apimatic.docs.apiary.io
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focuses on extracting three components of API specifications: base
URLs, path templates, and descriptions (i.e., HTTP methods).

The web API’s base URL is essential in a web API specifica-
tion: any URL of a Web API request must contain the base URL
and the relative path of the corresponding endpoint. More for-
mally, a base URL is a common prefix of all URLs for web API
invocations, excluding other URLs such as documentation pages.
In OpenAPI specifications, a base URL is constructed via three
fields: a scheme (e.g., https), the host (e.g., api.instagram.com),
and optionally a base path (e.g., /v1). In many APIs (e.g., Insta-
gram API ), the base URL is the longest common prefix of all the
URLs for invoking the web API. However, for other APIs, such as
Microsoft’s The DevTest Labs Client API, the longest common pre-
fix is https://management. azure.com/subscriptions while
the actual base URL is https://management.azure.com, because
/subscriptions is defined to be part of the endpoint paths.Whether
a base URL is indeed the longest common prefix is a design decision
of the API provider.

A path template defines fixed components of a URL as well
as ones to be instantiated dynamically. For example, in the path
template /users/{userId}/posts, the part {userId} is a path

parameter that needs to be instantiated with a concrete value of a
user ID before performing a request. A path parameter is typically
denoted via enclosing brackets (i.e., “{}”, “[]”, “<>”, or “()”) or a
prefix “:”.

D2Spec focuses on one type of description associated with the
path template: the HTTP method. It reflects the type of interac-
tion to be performed on a resource exposed by a web API. While
many web APIs long relied on GET and POST, now a much broader
spectrum of methods is used [22]. As proposed in related work, we
denote every valid combination of a path template and an HTTP
method as an endpoint of the API [26].

D2Spec combines a set of techniques to infer the base URL, path
templates, and HTTP methods, given a seed documentation page.
Figure 3 provides an overview. In the first step, D2Spec uses a simple
crawling approach to obtain complete documentation sources for an
API. The crawler, starting from the provided seed page, iteratively
downloads all linked sub pages. For crawling, D2Spec uses the
headless browser Splash11 to execute any JavaScript on each page
before downloading it, as this may impact the resulting HTML
structure. In order to extract the base URL (see Section 2.1), D2Spec
first extracts all candidate URLs that can represent a web API call
from the crawled documentation pages; D2Spec next leverages
machine learning classification to determine for each candidate
URL whether or not it is likely to represent an invocation to the
documented web API. Finally, D2Spec selects the longest common
prefix of these URLs. For the path templates (see Section 2.2),
D2Spec leverages the URLs likely to be invocations of the API and
extracts the URL paths (the part of the URL after removing the
base URL). From these paths, using an agglomerative hierarchical
clustering algorithm, D2Spec infers path templates by identifying
path parameters and aggregating paths. D2Spec then finds the
descriptions co-located with the URL paths in the documentation,
from which it extracts the HTTP method(s) (see Section 2.3) that
can be combined with each path template (forming endpoints).

11https://scrapinghub.com/splash/

2.1 Base URL Extraction

Identifying the base URL in online documentation is not as straight-
forward as searching for keywords or templates such as “The base
URL is <base URL>”; base URLs are often not explicitly mentioned
in the documentation. Rather, base URLs are often included as
part of depicted examples of web API requests, as in the case of
the GitHub documentation shown in Figure 1. Thus, D2Spec’s ap-
proach is to infer the base URL from all the URLs provided in online
documentation.

Step 1 - Extracting URLs

As a first step, D2Spec extracts all candidate URLs in the documen-
tation that represent web API calls. These candidate URLs consist
of standard URLs (according to the W3C definition [2]) and URLs
containing path parameters enclosed in “{}”, “[]”, “()”, or “<>”.
We do not include in this list URL links within href attributes of
link tags, nor inside <script> tags: URLs that represent web API
calls are one of the main content in a documentation page to be
communicated to the readers; hence, such URLs tend to be rendered
in the documentation rather than appear as links or in scripts. Even
excluding such links, some of the URLs in the candidate list may
not represent web API calls, e.g., URLs of related or even unrelated
resources. In fact, we studied a set of 15 web APIs12 and found that
42% of the contained URLs are not invocations of web APIs.

Step 2 - Identifying URLs of web API calls

To filter out spurious URLs that do not represent web API calls,
we use supervised machine learning classification to determine
whether each URL from Step 1 is likely to represent a web API
call. For each URL, D2Spec generates two categories of features:
properties of documentation pages and properties of the URL itself.
The first category consists of four features related to properties of
the documentation pages from which URLs were extracted:

• clickable: True, if the URL is part of the link text enclosed
in <a> tags with the “href” attribute.
• code_tag: True, if the URL appears inside <code> tags, and
false otherwise.
• within_json: True, if the URL is inside valid JSON within a
pair of matched HTML tags.
• same_domain_with_doc_link: True, if the URL has the same
host name as the URL of the documentation page itself, and
false otherwise.

The second category consists of four features related to properties
of the URL itself:

• query_parameter: True, if the URL contains query parame-
ters which are denoted by ? and/or =. For example, in the URL
https://api.github.com/.../issues?state=closed, state
is a parameter with the value closed. URLs with parameters
are more likely to depict web API calls.
• api_convention: The number of conventions exhibited by
the URL indicates whether it likely corresponds to a web
API call. We include three conventions described in previous
work [22]: (1) whether the URL contains the term rest; (2)
whether the URL contains the term api; and (3) whether
the URL contains version related information, including the

12This data set of 15 web APIs, which we studied to design D2Spec, is independent of
our evaluation set.
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Algorithm 1: Clustering algorithm

Input: paths /*a set of paths that represent endpoints*/
Input: T /* Threshold for merging clusters */
Output: c1, ..., cn /*each cluster ci groups the paths invoking

the same endpoint*/
1 Function hierarchical_clustering (T, paths)

2 C ← make each path a singleton cluster

3 do

4 proдress ← f alse

5 foreach ci , c j ∈ C with min dist(ci , c j ) do

6 if dist(ci , c j ) < T then

7 proдress ← true

8 C ← C −
{

ci , c j
}

∪
{

merдe
(

ci , c j
)}

9 end

10 end

11 while |C | > 1 ∧ proдress;

We propose an iterative algorithm to infer whether a path seg-
ment is a fixed segment of an endpoint, a path parameter, or an
instantiated value. The algorithm consists of two main ideas. First,
it uses clustering to group paths that we infer to invoke the same
endpoint. For example, if we found four paths in the documentation
for an API:
/users/{username}/repos

/users/alice/repos

/users/alice/received_events

/users/bob/received_events

the clustering algorithm groups the first two into one cluster and
the last two into the second cluster. From the first cluster, we know
that alice is an instantiated value of {username}. Second, in sub-
sequent iterations, the algorithm then leverages the fact that alice
is an already inferred instantiated value to improve the clustering in
the next iteration, marking both alice and bob as two instantiated
values.

D2Spec uses hierarchical agglomerative clustering [18], as de-
scribed in Algorithm 1. Given a set of paths with the same number
of segments, the goal is to group the paths so that paths in a cluster
invoke the same endpoint. We begin with one data point (i.e., one
path) per cluster (line 2 in Algorithm 1). At each iteration (lines
4-10), we calculate the distance among all the pair-wise clusters and
picks the pair with the shortest distance (line 5) to merge (line 8).
For our implementation, the distance function (Algorithm 2) consid-
ers two paths the “closest” if they have exactly the same segments
– each matching concrete (i.e. not a path parameter) segment i gets
one point (Algorithm 2, line 8). Because two paths can never invoke
the same endpoint when they have a different number of segments,
the distance of such a pair is infinite (Algorithm 2, line 5). If the
j-th segment of a path is a path parameter, the distance function
considers the segment a match on the j-th segment of any other
paths of the same length, with a discounted point of 0.8 instead
of 1 (Algorithm 2, line 8). The clustering algorithm stops when
the next pair of clusters to merge has the distance larger than a
threshold T (Algorithm 1, lines 6, 7, and 11). In our implementation,
the threshold is set to 1, meaning that we allow paths in a cluster
to have a single path segment different from each other.

Algorithm 2: Distance functions

1 Function dist(cluster c1, cluster c2)

2 return min
path1∈c1,path2∈c2

dist_sinдles(path1,path2)

3 Function dist_singles(list of segments S1, list of segments S2)

4 if |S1 | , |S2 | then

5 return∞

6 end

7 else

8 sim ←

(

|{i |concrete(S1[i]) ∧ S1[i] = S2[i] }| +

0.8 × |{i |param(S1[j]) ∨ param(S2[j]) }|

)

9 d ← |S1 | − sim

10 return d

11 end

To leverage the instantiated values that are already inferred,
such as alice in the received_events cluster in the example, we
adapt the standard hierarchical agglomerative algorithm as follows
(Algorithm 3): The algorithm keeps track of a list of instantiated
values of the path parameters per API (line 9), and stops when
no additional instantiated values are found from the function in-

fer_parameter_value (lines 10 and 12). Each iteration starts by up-
dating the paths with the currently known instantiated values (lines
5-7). These paths are the input to the hierarchical agglomerative
clustering algorithm (line 8). Clustering is performed after updating
the newly instantiated values because when new path parameters
are identified, the similarities will be updated. Within each cluster,
new values of path parameters are inferred (line 10, the call to in-

fer_parameter_value). This adapted algorithm can correctly cluster
the four paths into two endpoints: /users/{username}/repos and
/users/ {username}/received_events.

2.3 HTTP Methods

In web API documentation, the paths (whether or not path parame-
ters are denoted explicitly or not) are typically co-located with other
valuable information that D2Spec aims to extract, namely valid
HTTP methods to use with a path template (GET, PUT, DELETE...).
We call the context in which this information exists a description
block of a path template. In this section, we first describe how we
locate the description block associated with a path template, and
then how D2Spec extracts the HTTP method.

D2Spec uses the URLs from the original documentation page
that match with the inferred path templates as anchors in docu-
mentation pages (in HTML) to locate the scope of the description
block. If there are multiple URLs in the page that match the path
template, D2Spec combines the contexts of all the URLs as the de-
scription block of the path template. D2Spec locates a description
block for each path template as follows. First, D2Spec parses the
documentation page into a DOM tree (Figure 4), with each node
representing the rendered text from the fragment of the HTML
page enclosed in a pair of matched tags. Second, D2Spec marks the
nodes whose rendered text contains at least one URL that matches
a path template as gray, and locates the description block for each
of these nodes. More specifically, for each gray node, D2Spec com-
bines its description block by expanding to include (1) the siblings
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selected Google APIs in our evaluation. Overall, fromAPIs.guru, the
APIs used in the evaluation consist of 48 APIs from the individual
providers (we will call this set GuruIndividual) and 20 Google APIs
(we will call this set GuruGoogleSample), thus a total of 68 APIs.

API Harmony [3] is a catalog of web APIs that helps developers
to find and choose web APIs, and learn how to use them. API Har-
mony collects information on public web APIs. When we collected
the evaluation data, API Harmony listed 1, 019 web APIs in total,
772 of which contained links to the API’s documentation page. We
crawled the links to these documentation pages with the help of
API Harmony’s sitemap.xml file. We took a sample of 48 APIs (Har-
monySample) from the 681 APIs from API Harmony and manually
verified that the documentation indeed describes the API (from 772,
we excluded 91 APIs that overlapped with APIs.guru).

From these two sources, collectively, we obtained 116 unique
APIs. For RQ1 and RQ2, we will examine the set of 116 APIs as
follows:

• TheGuruIndividual dataset consists of the 48APIs inAPIs.guru
that are not from Google or Microsoft.
• The GuruGoogleSample dataset consists of the 20 Google
APIs from APIs.guru.
• The HarmonySample dataset consists of a sample of 48 APIs
from the 681 APIs from API Harmony.

3.2 RQ1: Can D2Spec accurately extract web
API specifications from documentation?

Approach: To assess the accuracy of D2Spec, we aim to determine
how well the produced specifications match the input, which is the
online documentation.

To increase the generalizability of our results, we performed
the evaluation in two stages: First, we applied D2Spec to all 68
APIs obtained from APIs.guru (GuruIndividual and GuruGoogle-

Sample). These APIs do not contain the 15 APIs we used to train
D2Spec (see Section 2.1). We decided to use all APIs from APIs.guru
in this evaluation because the required manual examination of
them is also required to conduct the second research question, and
there are limited APIs in APIs.guru to study. Second, we performed
the evaluation on HarmonySample, which is a completely separate
data source from APIs.guru. The results for these APIs thus bet-
ter quantify how well D2Spec can potentially generalize to other
API documentation pages. We limited the number of APIs in Har-

monySample because the evaluation requires significant manual
effort.

Overall, for RQ1, we considered 116 APIs (GuruIndividual + Gu-

ruGoogleSample + HarmonySample). To create the ground truth, we
manually identified base URLs, path templates and HTTP methods
from web API documentation. We then compared the ground truth
with the specifications created by D2Spec for the same API. For
base URLs, we calculated precision, which is the percentage the
base URLs generated by D2Spec that are correct. Since each API
documentation describes only one base URL, and by design D2Spec
generates one base URL for each API documentation, recall is equal
to precision for base URLs. For path templates and HTTP methods,
we consider precision to be the percentage the results generated
by D2Spec that are correct and recall to be the percentage of the

Table 1: Precision and recall of D2Spec

HarmonySample

(48 APIs)
GuruGoogleSample

(20 APIs)
GuruIndividual

(48 APIs)
All APIs
(116 APIs)

Base URL

# of APIs with
correct base URL 45 16 40 101
Precision 93.8% 80.0% 83.3% 87.1%

Path Template

# created D2Spec 967 188 1,331 2,486
# in documentation

(with correct base URLs) 747 196 1,526 2,469
# matches 683 187 1,127 1,997
Precision 70.6% 99.5% 84.7% 80.3%
Recall 91.4% 95.4% 73.9% 80.9%

HTTP Method

# created D2Spec 817 188 1,142 2,147
# in documentation

(with correct base URLs) 815 219 1,297 2,331
# matches 658 184 957 1,799
Precision 80.5% 97.9% 83.8% 83.8%
Recall 80.7% 84.0% 73.8% 77.2%

given information type (e.g., path templates) in the documentation
that D2Spec correctly generates. Because path templates and HTTP
methods can only be extracted if a base URL was previously de-
tected (see Sections 2.2 and 2.3), we focus on APIs for which D2Spec
was able to do so in these parts of the evaluation.

Results: D2Spec recovered base URLs with a precision of 87.1%,
inferred path templates with a precision of 80.3% and a recall of
80.9%, and extracted HTTP methods with a precision of 83.8% and
a recall of 77.2%. Table 1 provides a break-down of the results.

3.2.1 Base URL Results. For the 116webAPIs, D2Spec generated
correct base URLs for 101 of them, yielding a precision of 87.1%. In
the subsequent evaluation for path templates and HTTP methods
for RQ1, the evaluation was based on the 101 APIs.

Upon manual inspection, we found that there were two reasons
that D2Spec generated incorrect base URLs. First, when the docu-
mentation described multiple API versions, D2Spec was unable to
tell which onewas preferred by the writer of the documentation. For
example, in the documentation of the CityContext web API, two end-
points were described with https://api.citycontext.com/v1/postcodes

and https://api.citycontext.com/v2/<location>. D2Spec determined the
base URL to be https://api.citycontext.com by selecting the longest
common prefix of these two URLs. However, the official documen-
tation listed https://api.citycontext.com/v2 as base URL. Second, al-
though the classification achieved a good precision, it is unable to
remove all URLs that are not web API requests. Such URLs with the
same prefix caused D2Spec to generate incorrect base URLs when
they outnumbered the true web API requests.

3.2.2 Path Template Results. D2Spec was able to generate the
majority (80.9% recall) of path templates correctly (80.3% precision)
for the 101 web APIs whose base URLs are correctly identified by
D2Spec. There were in total 2,469 path templates described in the
documentation. D2Spec generated 2,486 path templates in total,
and 1,997 of them were correct. Thus, the overall precision of path
template extraction was 80.3%, and the recall was 80.9%. Figure 5
illustrates stacked histograms on precision and recall of the path
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(a) Precision of D2Spec on the 101 web APIs.

(b) Recall of D2Spec on the 101 web APIs.

Figure 5: Stacked histograms showing precision and recall

of D2Spec on the 101 web APIs for which the base URL was

correctly extracted.

template extraction on the 101 APIs that D2Spec can generate
correct base URLs for. For example, Figure 5a shows that for 58 (out
of 101) web APIs, D2Spec achieves a precision above 90%.

3.2.3 HTTP Method Results. D2Spec achieved a precision of
83.8% and a recall of 77.2% in extracting HTTP methods for the
path templates in the evaluated 101 web APIs. In total, there were
2,331 endpoints with the associated HTTP methods described in
the web API documentation evaluated; D2Spec produced a result
for 2,147 of them and 1,799 HTTP methods were correct. D2Spec
failed to locate the correct HTTP method when its position in the
documentation was far away from the path templates. For example,
the Mandrillapp documentation has a consolidated description for
all endpoints: “All API calls should be made with HTTP POST”,
instead of listing the method POST individually for each of the path
template. Thus, D2Spec failed to identify correct method names for
Mandrillapp’s path templates.

3.3 RQ2: Can D2Spec be used to identify
inconsistencies between a pre-existing API
specification and the API’s documentation,
pointing to the two being out of
synchronization?

Approach: We focused on the 68 APIs from APIs.guru (GuruIn-
dividual + GuruGoogleSample). For these APIs, we compared the
specifications generated by D2Spec (from hereon denoted as Tool-
Specs) with the specifications provided by APIs.guru (from hereon

denoted as GuruSpecs). Our comparison focused, again, on the
three pieces of information extracted by D2Spec, namely, base URLs,
path templates, and HTTP methods. For base URLs, we compared
whether the ones extracted by D2Spec per API match those defined
in the OpenAPI specifications. We obtained base URLs from the
specifications by concatenating the schemes, host, and basePath

fields. We then compared whether the extracted path templates

and the associated HTTP methods match the ones in the specifi-
cations.

For each of the three extracted pieces of information, we counted
the number of matches, and then manually inspected the mis-
matches to determine their origin.

Results: We found that mismatches between GuruSpecs and Tool-

Specs were partly caused by limitations of D2Spec, and partly by
publicly-available specifications (i.e., the GuruSpecs) being out of
synchronization with API documentation: Our manual inspection
showed that for base URLs and HTTP methods, GuruSpecs were
often up-to-date with documentation, and mismatches between
ToolSpecs and GuruSpecs were due to inaccuracies of D2Spec. How-
ever, for path templates, our manual inspection found that many
mismatches were due to the documentation and GuruSpecs being
out of synchronization with each other, or due to errors in the doc-
umentation. Specifically, for the 68 APIs evaluated, we identified
394 path templates from 24 APIs where GuruSpecs and the docu-
mentation were different. One reason for the mismatches is that as
web APIs evolve, API providers tend to keep documentation up-to-
date since it is, as a human-readable medium, often the first source
that developers inquire to use APIs. In the following, we present
the results of manually examining the mismatches between path
templates in GuruSpecs and ToolSpecs. We found that mismatches
fall into four categories:

• Inconsistencies were mismatches resulting from the docu-
mentation and specification in GuruSpecs being inconsistent
with each other. Such inconsistencies were not caused by
deficiencies of D2Spec or by errors in the documentation,
but indicated that the API provider should either update the
documentation or the specification. For example, in the doc-
umentation of Slack, there were eight endpoints on getting
information on members from a given Slack team. The paths
of all eight endpoints start with /users.<action>. How-
ever, only one path template was listed in the specification–
/users.list; the remaining seven (e.g., /users.info and
/users.setPresence) were missing in the specification. In
this case, we considered that there were seven inconsisten-
cies between the documentation and the specification.
• Errors in the documentation referred to obvious errors
in the documentation, e.g., typos. Incorrect information in
the documentation led D2Spec to generate path templates
that, while being labeled as correct with regard to RQ1, did
not match the specifications. For example, in the documen-
tation of the ClickMeter API, many path templates starting
with /datatpoints were misspelled as /datapoints. Thus,
D2Spec generated several mismatched path templates com-
pared to the official specification.
• Partially correct path templates occurred if D2Spec failed
to infer path parameters correctly (i.e., the path templates
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generated by D2Spec still contain path parameter values).
A common reason for this problem was that the documen-
tation contained only one instance of an instantiated value
for a path parameter. In such cases, even though D2Spec’s
clustering-based algorithm can correctly place the path in its
own cluster, D2Spec could not distinguish which segments
of the path were instantiated values and which ones are fixed
segments.
• Deficiencies in the algorithm occurredwhenD2Spec failed
to extract certain path templates or generated incorrect path
templates because of deficiencies in its design. For instance,
D2Spec failed to extract certain path templates if the way the
path templates appeared in the documentation was beyond
the scope of the conventions used by D2Spec. D2Spec relies
on the format of URL and relative path to extract path tem-
plate information. If the path templates are not presented
as such, D2Spec will not extract them correctly. For exam-
ple, HealthCare.gov’s documentation describes a series of
path templates as follows: “The following content types are
available: articles, blog, questions, glossary, states, and top-
ics. The request structure is https://.../api/:content-type.json.”
D2Spec extracts one path template–/api/{content-type.
json} instead of six path templates (e.g., /api/articles
and /api/blog). On the other hand, using the conventions
mentioned above, D2Spec also extracted false path templates
which did not describe path templates in the documentation.
For example, the documentation of dweet.io listed a file path
– /play/definitions, which was not a true path template.

Figure 6 visualizes the comparison of path templates from Gu-

ruSpecs and ToolSpecs. The breakdown of the mismatches from both
aspects (¬ToolSpecs ∩ GuruSpecs and ToolSpecs ∩ ¬GuruSpecs) is
shown as well. In total, there are 929 path template matches be-
tween ToolSpecs and GuruSpecs. Among the 1509 path templates
generated by D2Spec, there are 590 mismatches with the path tem-
plates defined in theGuruSpecs. Our manual analysis shows that 394
(67.8%) of the mismatches are caused by de-synchronization, i.e.,
“inconsistencies” and “errors in the doc.”. The other two categories
– “partially correct” and “deficiencies” – are due to the limitations
of D2Spec.

Overall, while themanual examination ofmismatches also pointed
to some weaknesses of D2Spec, it also highlights that D2Spec can
be used to find documentation and existing specifications being
out of synchronization. To focus on this aspect, Figure 7 shows
a histogram on the percentage of mismatches that are caused by
de-synchronization for each web API. It shows that, for example,
for 11 web APIs, over 90% of the mismatches detected by D2Spec
indicate that documentation and pre-existing specifications were
out of synchronization with each other.

4 THREATS TO VALIDITY AND DISCUSSIONS

Generalizability. D2Spec generates base URL from documenta-
tion by firstly identifying URLs that represent web API calls through
a classification algorithm. The classification algorithm uses a set of
pre-labeled URLs for training. We built the training set from a set
of web API documentation that were independent of the ones used
in the evaluation. The precision of D2Spec in base URL extraction

Figure 6: Comparison between path templates in specifica-

tions from D2Spec and the ones from APIs.guru.

Figure 7: Percentage of “Inconsistencies” and “Errors on the

documentation” between documentation and specifications

by APIs.guru across APIs from APIs.guru

may be different if we use a different training set. However, we
mitigated this bias by choosing a random set of web APIs for build-
ing the training set, and evaluating on a different set of APIs (the
GuruIndividual and GuruGoogleSample datasets described in Sec-
tion 3.1). In addition, we evaluated on a completely separate dataset
(HarmonySample) and even achieved a better precision (97.5%) com-
pared to a 80.0% precision on GuruGoogle and a 84.1% precision
on GuruIndividual, demonstrating that our approach is likely to
generalize to other unseen documentation pages.
Thresholds Used in the Clustering-Based Path Template Ex-

traction. D2Spec leverages an iterative clustering-based algorithm
to identify path parameters by inferring values of path parame-
ters from similar web API calls. The proposed algorithm contains
thresholds to control the hierarchical clustering (e.g., determining
whether two web API calls are similar through a threshold T, see
Algorithm 1 in Section 2.2). In this evaluation, we set the thresholds
based on our observations on the training set. We found that the
chosen thresholds also worked well for the evaluation set. Nev-
ertheless, future studies should investigate the effects of different
thresholds on the path template extraction results.
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Documentation with Identical Structures. APIs from the same
providersmay have identical documentation structures (e.g., Google
web APIs). Documentation structures may be different across dif-
ferent API providers. To show the generalizability of our approach,
we applied our approach to APIs from different providers: Our eval-
uation set contains 120 APIs from 98 different web API providers.

5 RELATED WORK

We discuss related works that address extracting or inferring web
API specifications, as well as works that rely on information ex-
traction approaches, both for extracting software entities and for
extracting any type of information from web pages generally.

Hanyang et al. describe AutoREST, a tool that, as does this work,
aims to extract web API specifications from HTML-based documen-
tation [9]. AutoREST uses a preprocessing step to select crawled
web pages that likely contain information relevant to the specifica-
tion, which could be used in combination with the here presented
work. AutoREST relies on a set of simple, fixed rules to extract in-
formation from selected HTML pages, whereas the here presented
methods are designed to be applicable also in light of stark differ-
ences in the way APIs are documented. We furthermore present
a more extensive and detailed evaluation in this work. Gao et al.
propose to infer constraints on the data required by web APIs (i.e.,
payload or parameters values) by mining both, API documentation
and error-messages [15]. In contrast to the here presented work, the
focus is thus on data definitions, making this work complementary
to ours.

Further related works on extracting web API specifications rely
on sources of information other than documentation. Wittern and
Suter use dynamic traces in form of web-server logs [26]. The
SpyREST tool, presented by Sohan et al., intercepts HTTP requests
to an API using a proxy and then attempts to infer the API spec-
ification from them [23]. In later work, the same authors discuss
the application of SpyREST at Cisco, where requests to the proxy
are driven by existing tests against APIs [24]. Ed-douibi et al. pro-
pose an approach to generate web API specifications from example
request-response pairs [12]. One benefit of our approach, as com-
pared to these works, is that API documentation is typically publicly
available, while access to web logs are limited to those with access
to the private web servers, proxying may not be an option, and
providing extensive examples for API usages may require (manual)
effort, which could be targeted to generate specifications directly.

Many software engineering researchers have looked into the
problem of identifying code elements—more specifically, Java code
elements such as method signatures and calls—from API documen-
tation. Dagenais and Robillard proposed an approach that extracts
code elements from API documentation and links the elements to
an index of known code elements, i.e., signatures from a Java li-
brary [11]. Subramanian et al. subsequently applied this approach to
identify code elements on Stack Overflow posts and augmented the
code elements in the posts with links to their official JavaDoc [25].
Rigby and Robillard use a light-weight, regular expression based
approach to identify code elements that relaxes the requirement
on a known index [21]. Another line of work focuses on extracting
more complex specifications on code entities from natural language
descriptions. Pandita et al. [20] extract method pre-conditions and

post-conditions from natural language API documentation. Lin et
al. [27] extract code contracts from comments and statically check
for violations in the code. Our work differs in two ways. First, we
extract web API endpoints and related information as opposed to
code elements. Second, there is arguably greater value in our re-
covered index (i.e., OpenAPI Specifications) because such an index
is often not available or known to the clients; while clients of Java
libraries (or other statically-typed languages) are always exposed
at least to method signatures, but callers of web APIs often do not
have such information.

There have been many efforts in information extraction on web
pages [8, 10, 14, 16, 19, 31, 32]. For example, techniques for ex-
tracting product information from e-commerce sites [31, 32] lever-
age the structure from the sites: the sites’ organizational structure
usually consists of a search page and a set of individual product
pages, which typically have the same structure as they are gener-
ated from scripts. These techniques exploit this common structure
across the pages within the same site. However, for extracting
endpoints and other information from web API documentation
pages, we cannot rely on such an assumption: There is no stan-
dard structure for API documentation. For many API documen-
tation the content is semi-structured at best, written by humans
using free-form text and/or diverse HTML structures. For exam-
ple, the GitHub API documentation uses an example-based style,
where the base URL https://api.github.com and the path tem-
plate /users/{username}/orgs are embedded in free-form text
and a curl command. Other documentation uses a more structured,
reference-based documentation style.

6 CONCLUSION

In this paper, we presented D2Spec, a tool which extracts parts of
web API specifications from documentation, including base URLs,
path templates, and HTTP methods. D2Spec is based on the three
assumptions: (1) documentation includes multiple web API URLs
(so that a base URL can be extracted); (2) path templates are either
denoted explicitly (e.g., using brackets) or that multiple example
URLs for paths exist from which templates can be inferred; and (3)
descriptions close to the path templates contain information about
HTTP methods.

One missing piece so far is understanding the data that is re-
turned by the APIs that we discover. We believe it is feasible to
do this in several possible ways. The first is extending our extrac-
tion from documentation; documentation often includes example
of API usage, and we could extract those examples and statically
analyze that code for what data it expects back. Given example API
usage, existing client code could be analyzed either dynamically or
statically to infer data structures.

Our evaluation of D2Spec shows that our assumptions hold
mostly true when it comes to extracting base URLs, path templates,
and HTTP methods. It furthermore shows that D2Spec is not only
useful for creating specifications from scratch, but also for checking
existing ones for consistency with documentation. We contacted
API providers for the found inconsistencies. In the future, we aim
to expand the scope of D2Spec to also extract information on data
structures, HTTP headers, and authentication methods.
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