
An exploration of how comments are used for marking
related code fragments

Annie T.T. Ying, James L. Wright, Steven Abrams
IBM Watson Research Center

19 Skyline Drive, Hawthorne, NY, 10532, USA

{aying,jimwr,sabrams}@us.ibm.com

ABSTRACT
A software developer performing a change task to a system
very often has to examine a concern that is scattered across
the source code of the system. Although many mechanisms
attempt to alleviate the problem of dealing with scattered
code, many software developers are still using more ad-hoc
approaches to mark related code. In this paper, we explore
how developers use comments to mark related code. We
found that developers use two basic kinds of conventions to
mark related code in comments: by explicitly stating rela-
tionships in the comment and by using similar comments in
related code elements. These conventions have several major
issues. However, we observe that using comments to mark
related code fragments offers several benefits. We hope that
our observations can give insights into building better tool
support for scattered code fragments.

1. INTRODUCTION
A software developer performing a change task to a system

very often has to examine a concern that is scattered across
the source code of the system. Such scattered code that
relates to a single concern may not necessarily result from
poor design. Even if the system is well-designed, one cannot
always anticipate all concerns over the lifetime of the system
amongst ever-changing circumstances. Furthermore, some
concerns are inherently difficult to modularize in the source
code.

Many researchers have proposed a wide range of mech-
anisms to address this problem. For example, AspectJ
provides language support for encapsulating concerns that
crosscut a system’s structure [4]. HyperJ provides support
for decomposing concerns—usually overlapping and inter-
acting with each other—along multiple dimensions simul-
taneously [6]. Concern Graph provides a light-weight rep-
resentation to capture and persist concerns and relation-
ships among program elements within a concern [5]. Aspect
Browser supports visualization of concern related code frag-
ments based on lexical searches on the program text [3].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop on Modeling and Analysis of Concerns in Software (MACS 2005)
16 May 2005, St. Louis, MO, USA
Copyright 2005 ACM 1-59593-119-8/05/05 ...$5.00.

Although such mechanisms offer many benefits in deal-
ing with scattered code, many software developers are still
using more ad-hoc approaches to mark related code frag-
ments. In this paper, we explore how developers use com-
ment conventions to mark related source code fragments. As
a preliminary study, we investigated an IBM internal code
base, the Architect’s Workbench (AWB). We found that de-
velopers use two basic kinds of conventions to mark related
code fragments with comments: by explicitly stating rela-
tionships in the comment and by using similar comments in
related code elements. These conventions have several is-
sues, such as similar comments denoting different concerns,
inability to denote the scope of the concern, and inconsistent
labeling of concerns. However, we observe that using com-
ments to mark related code fragments offers several benefits:
light-weight, flexible, and convenient to apply. We hope that
our observations can give insights into building better tool
support for scattered code fragments.

The rest of the paper is organized as follows: In Section
2, we presents our study of how comments are used to mark
related code fragments in the AWB code base. In Sectiond
3, we describe issues with using comments for the purpose
of marking related code fragments. In Section 4, we discuss
some issues with our study. In Section 5, we conclude.

2. STUDYING CONCERN-RELATED
COMMENTS

In this section, we present our study on how developers
use comments to mark related code. Section 2.1 describes
the settings of this study and Section 2.2 describes the cat-
egorization of the concern-related comments.

2.1 Study settings
To focus our attention on comments that are more likely

to show how developers use comment conventions for mark-
ing related code, we chose to limit our investigation to
Eclipse task comments [1]. Eclipse—a popular open-source
integrated development environment—has provided support
for comments that describe tasks to be performed on the
source code, using a “task tag” mechanism. Using the Java
perspective in Eclipse, Java programmers can embed pre-
defined task tag strings, such as “TODO”, in the comments
on the source code, and then use the task view to browse
a summary of the places in the code with a comment that
contains a task tag. From the task view, a user can click
on an entry and navigate to the corresponding source code.
The intuition behind choosing to only focus on Eclipse task
comments is that such comments tend to be more ad-hoc

1

and informal, encouraging developers to use them for what-
ever needs they may have. Other types of comments, such as
JavaDoc, tend to be more structured, with well-understood
conventions and goals. Thus, they do not tend to accommo-
date purposes other than the ones that are intended.

In this study, we chose to investigate task comments in the
AWB code base. The AWB project consists of two major
parts: a platform that provides customizable representations
and tool support for models, and a particular instantiation
of this platform in the system architecture domain, which
embodies a tool that helps IT architects transform infor-
mal notes into various formal system architecture models.
The source code of AWB is written primarily in Java and is
implemented as an Eclipse plug-in.

We studied the Eclipse task comments that were found in
one version of AWB that was checked out from the AWB
CVS repositories on February 9, 2005. The codebase con-
sists of 2,213 files. This version of the code contains 221
task comments. Five developers contributed to these task
comments.

2.2 Study results
To explore how task comments are used to mark related

code, for each of the task comment we found in the version
of AWB code we studied, we first determined whether the
comment was used for marking a dependency with another
program element. Of all such concern-related comments,
we found that developers use two basic kinds of conventions
to mark related code with comments: by explicitly stating
relationships in the comment and by using similar comments
in related code elements.

Table 1 gives some example comments. The first col-
umn labeled “Conventions” summarizes the comment con-
ventions developers use to mark related code in the AWB
code base. The second column labeled “Comment exam-
ples” shows examples of comments that use particular con-
ventions to mark related code. For the rest of this section,
we describe the examples presented in these examples.

2.2.1 Explicit relationship
The conventions prefixed “explicit relationship” in the

first column of Table 1 describe cases where a comment
explicitly states a relationship from the code close to the
comment to other part(s) of the code.

• In the example labeled “explicit relationship: speci-
fied targets,” the comment reveals a subtle dependency
among duplicate code fragments scattered across four
methods in two files.

• In the example labeled “explicit relationship: implied
targets”, the comment reveals a concern, tracing for
finding a particular bug related to a NullPointerExcep-
tion. Although the code that relates to this concern is
scattered throughout the method, the developer uses
a single comment to mark this concern.

2.2.2 Similar comments marking related code
The conventions prefixed “similar comments marking re-

lated code” in the first column of Table 1 describe cases
where two or more similar comments are used to mark re-
lated program elements. Griswold called this convention
information transparency [2].

• The example labeled “similar comments marking re-
lated code: bug number” presents two comments, both
containing the string “ECR 311,” where ECR stands
for Enhancement Change Report. These are used to
denote code that are related to the same bug #311.
Together with seven other comments that contains the
string “ECR 311,” the comments denote code frag-
ments that are scattered across eight different files.

• The example labeled “similar comments marking re-
lated code: concern tag” presents two comments con-
taining the string “richtext,” denoting the code related
to the “rich text” feature in AWB. Together with seven
other comments that refer to the rich text feature,
these comments indicate the scattered code fragments
that are part of the rich text feature.

• The example labeled “similar comments marking re-
lated code: same comment” presents a comment that
was repeated in four places in the code, each in a dif-
ferent file. The comments were used to mark a fix to
a threading problem. The code that contains the fix
is anticipated to be revisited because fixes to thread-
ing problems are tricky due to the difficulty in proving
correctness and testing multi-threaded applications.

From this study, we observed several benefits of using
comments as a convention to mark scattered code:

Light-weight : Using comments to mark related code re-
quires minimal tool support – it only requires a grep-like
tool for searching the related comments and code.

Flexible: Because a comment is free-from, it is flexible
– it can be used to refer external entities, such as using
a bug number to refer to external bug database. A com-
ment can also be used to mark multiple concerns. For ex-
ample, the comment “// [..] notestonodes: ECR 311”
expresses a relationship of the code both to a higher level
concept “notes-to-nodes” and a relationship to a bug report.

3. ISSUES WITH CONCERN-RELATED
COMMENTS

In this section, we discuss a few issues with using com-
ments to mark code fragments.

3.1 Similar comments denoting different con-
cerns

Similar comments are not only used to denote the same
concern, but may also denote different concerns. In the
AWB code, there are many instances of the comment “//
TODO Auto-generated method stub,” which are generated
by the Eclipse code generator. When using Eclipse to gen-
erate a Java class from a super-class or an interface, Eclipse
automatically inserts this comment for the generated meth-
ods and constructor stubs. These kinds of comments may
denote code fragments from completely different concern.

3.2 Scope of a comment
The scope of the comment is often not apparent because

the comment only marks a single point in the code. Develop-
ers use different assumptions about what regions of code the
comment applies to. For example, comments may not con-
tain any explicit region information, but a developer may
use a comment to refer to the statement immediately fol-
lowing the comment, may use a comment to refer to all the

2

Conventions Comment examples

explicit relationship: // [..] code duplication with IRelationTableModel:

specified target peer(), relation(), relationTypeName()

explicit relationship: // [..] remove tracery when NPE [NullPointerException] is solved

implied target
similar comments marking related code: nine comments denoting ECR 311, two of which are:
bug number // [..] ECR 311: get copy-text button to work

// [..] ECR 311: handle the case of multiple Node-*types*

similar comments marking related code: nine comments denoting the “rich text” concern, two of which are
concern tag // [..] richtext: eliminate this once ECR 317 complete

// [..] richtext: handle the URL-case

similar comments marking related code: the same comment in four places in the code:
same comment // [..] EXPERIMENTAL

Table 1: Results of categorization how developers use comments to mark related code

statements until the next blank line occurs, or may use a
comment to denote the code in the entire enclosing scope.

In addition, the task comment may apply to mul-
tiple non-contiguous places in code. For example,
the task comment “// [..] remove tracery when NPE

[NullPointerException] is solved.” refers to tracing
statements in many places, not just the statement imme-
diately below the comment. Finding all the places the de-
veloper had in mind can be challenging.

3.3 Inconsistent concern labeling
Using comment conventions to denote related code is a

very light-weight and convenient approach, but sophisti-
cated support is lacking. For example, there were nine com-
ments related to the “rich text” concern in AWB and a de-
veloper describes this concept using a concern tag. However,
the developer used three different formats to write “rich
text”: “rich-text”, “richtext”, “RichText”. This inconsis-
tent labeling can hinder subsequent efforts by a developer
to locate these comments through search tools.

3.4 Consistency on comments and code
Comments can easily go stale because maintaining the

consistency on comments and code is a manual process.
For example, the comment “// [..] code duplication

with IRelationTableModel: peer(), relation(),

relationTypeName()” explicitly states the names of the
method in the comment. When one of these methods is
renamed, the comment needs to get updated with the
new method name manually in order to maintain the
accurarcy of the comments. Another example is when
similar comments are used to mark a related concern and
one of the comments changes, all such comments must be
updated manually.

4. DISCUSSION
In this section, we discuss some issues with our study.

4.1 Significance of Eclipse task comments
To “talk” to other team members through source code, a

developer may use a Java comment, not necessarily a task
comment. However, we did not investigate all the Java com-
ments: The codebase contains 15,748 JavaDoc comments1

1We define the number JavaDoc comments as the number
Java tokens “/**” in the source code.

and 13,457 non-JavaDoc comments2 , and it was impossible
to analyze all of them manually. Although task comments
only accounts for a small fraction of all the comments in the
AWB codebase, we still chose to examine task comments.
Task comments are likely to be good candidates to contain
information that is relevant to the current development con-
text, as task comments are intended to be more transient—
created and deleted more often—than other comments.

4.2 Generalizability of the results
In this preliminary study, we examined the task comments

of one project. We cannot draw general conclusions about
our task comment categorization from only one project. In
addition, the results from this study may not be generaliz-
able to other projects. The AWB is a small team of less than
ten developers. Programming practices that are peculiar to
a particular developer can dramatically affect the results.

5. CONCLUSION
In this paper, we have described uses of comments to mark

related code fragments in the AWB code base. We have
found that developers use an explicit reference to relate to
other scattered code fragments and use similar comments to
mark related code fragments. The results of this study is
not surprising, but it points out some benefits and issues of
using comments as a convention for marking related code.
These may provide insights for building future mechanisms
to better support scattered code.

6. ACKNOWLEDGMENT
We are grateful to the AWB team for lending their code-

base for this study, as well as the prompt and useful help
in understanding the intention of the comments. We would
also like to thank Mark Chu-Carroll and Martin Robillard
for many inspirational discussions. Moreover, we would like
to thank anonymous reviewers for the useful feedback.

7. REFERENCES
[1] Eclipse task tags website. http://127.0.0.1:55317/help/

index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-
preferences-task-tags.htm.

2We define the number of non-JavaDoc comments as the
number of Java tokens “//”, plus the number of Java tokens
“/*” in the source code.

3

[2] W. G. Griswold. Coping with crosscutting software changes
using information transparency. In Reflection 2001:
International Conference on Metalevel Architectures and
Separation of Crosscutting, pages 250–265, 2001.

[3] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the
map metaphor in a tool for software evolution. In
International Conference on Software Engineering, pages
265–274. IEEE Computer Society, 2001.

[4] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In European Conference on Object-Oriented
Programming, pages 220–242. 1997.

[5] M. P. Robillard and G. C. Murphy. Concern graphs: finding
and describing concerns using structural program
dependencies. In International Conference on Software
Engineering, pages 406–416. ACM Press, 2002.

[6] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton. N
degrees of separation: Multi-dimensional separation of
concerns. In International Conference on Software
Engineering, pages 107–119, 1999.

4

