
Scaling an Object-oriented System Execution Visualizer
through Sampling

Andrew Chan, Reid Holmes, Gail C. Murphy and Annie T.T. Ying

Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver BC Canada V6T 1Z4

{chana, rtholmes, murphy, aying}@cs.ubc.ca

UBC CS Tech Report TR-2002-05
July 26, 2002

Abstract

Increasingly, applications are being built by com-
bining existing software components. For the most
part, a software developer can treat components as
black-boxes. However, for some tasks, such as
performance tuning tasks, a developer must con-
sider how the components are implemented and
how they interact. In these cases, a developer may
be able to perform the task more effectively if dy-
namic information about how the system executes
is available. To deal with the voluminous amount
of dynamic information that can be generated, tool
support is typically needed. In previous work, we
demonstrated the utility of a tool, called AVID (Ar-
chitectural VIsualization of Dynamics), that ani-
mates dynamic information in terms of developer-
chosen architectural views. One limitation of this
earlier work was that AVID relied on detailed—
trace-based—information collected about the sys-
tem’s execution, limiting the duration of execution
that could be considered. To enable AVID to scale
to larger, longer-running systems, we have been in-
vestigating the visualization and animation of sam-
pled dynamic information. In this paper, we dis-
cuss the addition of sampling support to AVID, and
we present two case studies in which we experi-
mented with animating sampled dynamic informa-
tion to help with performance tuning tasks on the
Eclipse integrated development environment.

1 Introduction

Increasingly, applications are being built by instan-
tiating, combining, and extending existing software
components. A developer integrating a specialized
Java editing tool into the Eclipse integrated devel-
opment environment (IDE) [2], for instance, will
make use of a number of existing components, such
as GUI, windowing, and file navigation compo-
nents. This approach to development can provide
many benefits, including reducing the time and ef-
fort needed to develop and deploy complex appli-
cations.

These development benefits are realized when a
developer can treat the components being used as
black-boxes. A developer accesses the functional-
ity of the components through a set of program-
matic interfaces.1 For most development and evo-
lution tasks on a system, this view of a component
is sufficient. However, for some tasks, a devel-
oper needs to “open up” the component and con-
sider how the component is implemented. As an
example, the developer integrating the Java edit-
ing tool described above may use the Eclipse Java
package view as a black-box component when im-
plementing a system, but may need to consider the

1We use the termsoftware componentin this paper to refer to
any piece of software that the developer treats largely as a black-
box, and with which the developer interacts through some set of
programmatic interfaces. We include in this definition libraries
and object-oriented frameworks.

1



implementation of the package view if switching
between packages leads to a performance problem.

In cases where opening up a component is pos-
sible and desirable, a developer can benefit from
tool support to analyze the source and execution of
the system. In this paper, we focus on cases where
a developer can benefit from analyzing the execu-
tion; we refer to information collected from a sys-
tem’s execution asdynamic information.

Dynamic information is voluminous. One ap-
proach to dealing with the volume is to summa-
rize the data collected and to present the developer
with the summary. Profiling tools, such as JProbe
Profiler [10], are examples of this approach. For
some tasks, summary information is sufficient. A
developer may be able to tune the performance by
knowing which methods consumed the most exe-
cution time. As another example, knowing which
methods executed may be sufficient to compute a
coverage metric for guiding testing activities.

At other times, a developer requires more de-
tailed information about the order in which execu-
tion events occurred, the frequency of certain pat-
terns of calls, or other similar information [12].
In these cases, a developer can use a detailed vi-
sualization tool, such as Jinsight [9], that allows
a developer to track and analyze various informa-
tion including interactions between classes, and the
contents of the heap. One of the major assets of
these tools—their support for detailed investigation
of execution—is also a liability for some tasks. A
developer must typically have narrowed down the
problem to a small part of the execution of the sys-
tem for the tool to handle the volume of informa-
tion, and the developer must consider the system
largely at a uniformly low-level of detail, such as
classes, making it difficult to correlate the informa-
tion to a component view the developer may be us-
ing when building the system.

To help a developer in cases where a coarser-
grained, component, view of the execution is use-
ful, we introduced the AVID tool (Architectural VI-
sualization of Dynamics) [18]. AVID supports the
off-line visualization of dynamic information col-
lected from the execution of a Java system in terms
of user-defined architectural views. One limitation
of this earlier work was that AVID abstracted de-
tailed dynamic information, working from essen-
tially the same information as the detailed visual-
ization tools described above. To enable AVID to
visualize longer durations of large system, we have

been investigating the visualization and animation
of sampleddynamic information.

In this paper, we describe how we added sam-
pling support to AVID, and the effect that sup-
port has on the size of the dynamic information.
We describe two case studies in which we used
AVID with sampling support to investigate two per-
formance tuning tasks on the Eclipse IDE develop-
ment. This paper makes two contributions:

• it demonstrates the utility of visualizing and
animated sampled execution traces, and

• it discusses the tradeoffs of different sampling
options.

We begin by describing the AVID tool (Sec-
tion 2) and the support we have added to AVID for
sampling. Next, we describe the case stud-
ies in which we applied AVID to two tasks on
Eclipse (Section 3). We then present a discus-
sion of issues involved with sampling (Section 4),
and compare with related efforts (Section 5) before
summarizing the paper (Section 6).

2 AVID

To provide context for our description of sampling
support, we begin with a brief overview of the basic
capabilities of the AVID tool. In-depth descriptions
and discussions of AVID’s capabilities are avail-
able elsewhere [18, 17, 1].2

2.1 Basic Features

AVID is an off-line visualizer for Java applica-
tions. A developer collects information—a trace—
about the calls between methods and about the in-
stantiation and destruction of objects in an execu-
tion of a Java application of interest. The devel-
oper then specifies, through amappingfile, a view
to use to present the dynamic information. The
view consists of a set ofentities: Each entity rep-
resents a collection of classes in the application.
The developer chooses a view that is relevant to
the task at hand. Given the trace and the map-
ping, AVID presents a user-controllable animation

2The first version of AVID supported visualizing the execu-
tion of Smalltalk applications [18]. Although the current tool
supports visualizing the execution of Java applications, the ba-
sic features are unchanged from those described in the earlier
publication.

2



that allows the developer to traverse the trace and
to view the execution in terms of the described en-
tities. The user can, at any time, change the defini-
tion of entities in the animation to refine the view
as desired.

To make this abstract description of AVID con-
crete, consider the following example. A developer
is asked to fix a bug on the Java Petri Net edi-
tor (JARP) that involves a problem with handlers
not appearing on nodes added dynamically [6].
JARP is built on the JHotDraw framework, which
supports the creation of structured drawing edi-
tors [8].3 As a first step, if the developer is not
intimately familiar with JARP or JHotDraw, the de-
veloper could use AVID to investigate the interac-
tions between parts of the framework and parts of
the application when the bug occurs.

To proceed, the developer collects a trace of the
execution of the system when the problem occurs.
The AVID toolset uses the Jinsight tracer to col-
lect dynamic information; a Jinsight trace is then
postprocessed using AVID tools into the AVID for-
mat [17], which enables fast abstraction of the in-
formation in terms of user-defined entities. The de-
veloper must then define the entities of interest for
investigating this bug. The developer chooses to
focus on major framework and application compo-
nents, specifying the mapping shown in Figure 1.
This mapping lists five entities: four entities asso-
ciated with major parts of the JHotDraw framework
(prefixed with JHD), and one entity representing
the JARP application. Associated with each entity
is a regular expression describing a pattern for the
names of classes associated with the entity. For ex-
ample, the first line specifies that all classes starting
with CH.ifa.draw.framework in their fully-qualified
name are associated with the JHD-framework en-
tity.

Given the processed trace and the mapping file,
AVID displays the window shown in Figure 2. This
window shows thecel modeof AVID in which
the execution is broken into a sequence ofcels.
Each cel displays both incremental and summary
dynamic information about the dynamic informa-
tion collected to that point. The incremental in-
formation consists of a hyperarc (in grey) show-
ing the current call stack. The summary informa-
tion consists of arcs showing the cumulative num-
ber of calls between different entities, and bars in

3This bug is #477918 reported on the JHotDraw framework.

each entity showing the number of object alloca-
tions and deallocations corresponding to the classes
associated with the entity. For instance, in Figure 2,
to this point in the collected dynamic information,
128 calls have occurred between objects associated
with the JHD-standard and the JHD-framework en-
tities, and 88 objects have been instantiated that
are associated with the JHD-framework entity. A
histogram for each entity can also be displayed
that shows when objects have been allocated and
deallocated: these histograms are controlled by a
user preference set in the AVID menus and are not
shown in Figure 2.

In the cel mode, buttons are active that allow a
user to animate the execution. A user can choose
to play the animation forward, can choose to step,
forward or backward, through the animation, or can
move the navigation bar to any point they desire to
see in the animation. The position of the slider in
Figure 2 indicates that the animation is about3/4
of the way through the dynamic information. The
summary button at the top of the AVID window
switches the window to asummary modeview. The
summary mode allows a user to see cumulative call
and object activity information in terms of the de-
fined entities. As this mode is not used in the case
studies, we do not discuss it further. Thereload
button allows a developer to change the definition
of entities to use in the view during an AVID ses-
sion.

When viewing a cel, a developer may wish to
view more detailed information about the calls that
have occurred, or the objects that are being allo-
cated or deallocated. To determine this detailed
information, a developer may click on a summary
arc, or on an entity, and the appropriate informa-
tion will be loaded into a slice definition in Jinsight.
The slice definition allows a developer to use the
Jinsight views to investigate just that piece of the
execution. For example, a developer may use the
table view in Jinsight to determine how many ob-
jects of each class, to that point in the execution,
have been allocated or freed.

2.2 Sampling Support

The trace file collected to investigate the bug re-
ported for JHotDraw described above is over 37Mb
in size. This trace file represents only a small part
of the execution, specifically starting the JARP ap-
plication and placing a few figures into the editor.

3



category JHD-framework class CH.ifa.draw.framework.*
category JHD-standard class CH.ifa.draw.standard.*
category JHD-figures class CH.ifa.draw.figures.*
category JHD-util class CH.ifa.draw.util.*
category JARP class edu.lcmi.petri.*

Figure 1: AVID Mapping File for JHotDraw Task

Figure 2: AVID with JARP Example Loaded

4



When the piece of the execution that needs to be
analyzed is short and can be determined, the size of
the trace may not be an issue. After all, disk space
is plentiful, and the growing amounts of memory
commonly found in computers can accommodate
the use of detailed visualizers for traces in the hun-
dreds of megabytes in size.

When a software developer is trying to isolate
a piece of execution representative for the task at
hand, or when the system is large, the size of the
trace can quickly become Gigabytes in size. Reiss
and Renieries reported, for instance, that a tracer
they built for Java produces approximately one gi-
gabyte of data for every ten seconds of JITed Java
execution [13]. There are a number of approaches
possible for reducing the size of the trace; we dis-
cuss these approaches in Section 5. Given the style
of visualization in AVID, we decided to investigate
the use of sampling to reduce the trace size.

The problem we faced was deciding what to
sample. The input consisted of a discrete stream
of events, including method entry, method exit, ob-
ject allocation, object deallocation, thread start, and
thread stop events. To provide flexibility in our in-
vestigations, we chose to support separate configu-
ration of memory and control-flow event sampling.
For memory events, a developer can choose to:

M-1 take everyxth memory (object allocation or
deallocation) event,

M-2 take the first memory event that occurs during
or afterxth timestamp, or

M-3 do M-1 or M-2 with a snapshot of the call
stack output before every memory event that
is sampled.

The call stack snapshot option provides context for
allocation or deallocation.

For control-flow events, a developer can choose
to:

C-1 take everyxth control-flow (method entry or
method exit) event,

C-2 take a snapshot of the call stack everyxth
event, AVID will determine which methods
are entered or exited by comparing two con-
secutive snapshots, or

C-3 C-2 except that the snapshots are taken every
xth timestamps.

<sampling>
<range>

<sample object="0"
method="0"
stack="50"
stackonobject="no"
type="event"
start="10000"
end="200000"/>

</range>
<default>

<trace/>
</default>

</sampling>

Figure 3: Control File

In addition to being able to control the kind of
sample taken, the developer can also choose when
sampling occurs, and can choose to intersperse
sampling and trace information. Currently, a de-
veloper specifies the interspersion of sampling in
the trace through a control file that is input to the
trace post-processing step. The control file sup-
ports the definition of sampling ranges in the trace;
for each range, different sampling parameters can
be set. We chose to support sampling in the post-
processing step to support the investigation of dif-
ferent sampling approaches over the same execu-
tion trace. We discuss issues associated with col-
lecting sampling information in Section 4.

For example, a developer might choose to sam-
ple control-flow events using approach C-2 every
50 events between timestamps 10000 and 200000.4

The portion of an XML-based control file to spec-
ify this choice is shown in Figure 3.

The visualization supported by AVID changes
slightly when displaying sampled information.
The word “sampling” appears near the timestamp
shown at the top of the window for any cel display-
ing sampled information, and any memory event
histograms, if displayed by the developer, are sup-
pressed for the duration of the sampled informa-
tion.

4The timestamps refer to tics recorded during the Jinsight
tracing.

5



3 Case Studies

To investigate if there is utility in visualizing and
animating sampled execution traces from an ar-
chitectural view, and if so, to investigate different
sampling options, we performed two case studies.
Each case study focused on a performance tuning
tasks on the Eclipse IDE for which the problem had
been identified, and solved. Eclipse is a large sys-
tem, consisting of approximately 775,000 lines of
Java source code. Using completed performance
tuning tasks for our case studies allows us to fo-
cus on the sampling capabilities of AVID. For each
study, we describe the performance problem, the
features of the problem that are evident when run-
ning AVID over trace dynamic information, the ef-
fect of sampling options on the visualization and
animation of those features, and the results we syn-
thesize from each study.

3.1 Case Study #1

This case study focused on bug #10216 in the
Eclipse bugzilla problem reporting system, which
is described as “filesystem is accessed too often”.
Specifically, when an Eclipse workspace was lo-
cated on a slow(er) network connection, the perfor-
mance of navigating in the package view and other
parts of Eclipse degraded. This problem was noted
against Eclipse 2.0 (build 20020214).

With AVID, we investigated two versions of
Eclipse: build 20020125 in which the problem ex-
isted, and build 20020521 in which the problem
was fixed. We refer to the former as theunopti-
mizedversion, and the latter as theoptimizedver-
sion.

3.1.1 AVID View

We used five entities in AVID to investigate the per-
formance problem:

• JavaProject, representing a specific class in
the Eclipse implementation that provides ac-
cess to the files comprising a Java project,

• JDT-CORE, representing the classes involved
in providing the non-UI parts of the Java pro-
gramming environment support,

• JDT-UI, representing the classes involved in
providing the UI parts of the Java program-
ming environment support,

• CORE, representing the classes involved in
supporting Eclipse plug-ins and the plug-in
registry, and

• JDK, representing the classes comprising the
Java development kit.

The mapping file is shown in Figure 4. From the
viewpoint of a developer performing the task, this
map includes seemingly omniscient information.
While a developer might reasonably be expected to
posit architectural entities corresponding to major
components in Eclipse, how would the developer
know to separate out the JavaProject class? We
separated it out because it was mentioned in the de-
scription of the bug report. This might be a reason
a developer assigned to the project would choose
it as an entity. Alternatively, a developer might
find, through a coarser AVID view, or through the
use of another tool such as a profiler, that the class
was heavily involved in the functionality of inter-
est, and might choose to separate it out. In our uses
of AVID, we have frequently started with a coarse-
grained view, and then have subsequently refined
the view based on investigating the arcs between
entities, amongst other features of the visualization.
Thereload feature of AVID makes it straightfor-
ward to refine the view.

To investigate the problem, we collected a
trace from each of the optimized and unopti-
mized versions. Each trace is representative
of the same use of Eclipse: We focused on
the behaviour of the system when a user adds
an external jar (org.eclipse.core.boot/boot.jar) into
a Java project, which contains only two other
external jars (org.eclipse.jdt.core/jdtcore.jar and
org.eclipse.jdt.ui/jdt.jar).

We then used AVID to view each of the traces.
We were interested in how JavaProject interacted
with the other entities. Figure 5 shows AVID posi-
tioned to a point near the end of the trace.5 Viewing

5In this view, the developer set a parameter called thestep
sizeto a number greater than the default of one. The step size de-
termines how many events are shown in a cel. A step size greater
than one allows faster playing of the animation, and makes it
easier to step across the execution. The step size can be set at
any time through the user interface. As the view shows, when
the step size is greater than one, an additional value appears on
the summary call arcs representing the incremental change in
the number of calls between the previous and the current cel.
For example, five calls between JDT-CORE and JDK have oc-
curred in the current step. These incremental values were not
used in the case studies.

6



category JavaProject class org.eclipse.jdt.internal.core.JavaProject
category JDT-CORE class org.eclipse.jdt.core.*
category JDT-CORE class org.eclipse.internal.jdt.core.*
category JDT-UI class org.eclipse.jdt.ui.*
category JDT-UI class org.eclipse.internal.jdt.ui.*
category CORE class org.eclipse.core.*
category CORE class org.eclipse.pde.*
category JDK class java.*

Figure 4: Mapping File for Filesystem Access Study

cels in the trace from the unoptimized version, we
found the following features of the problem:

F-1 20 calls occur from JDT-CORE to JavaPro-
ject before any call from JDT-UI. These calls
surprised us because we had assumed that
JavaProject was not used prior to adding the
external jar in our usage scenario: We be-
lieved we had collected a trace from the point
when the behaviour was triggered from the
user interface. A developer assigned the per-
formance tuning task would likely want to in-
vestigate these calls.

F-2 51 calls occur from JDT-CORE to JavaProject
after a call from JDT-UI to JDT-CORE. The
developer might choose to investigate why
31 additional calls are needed to JavaProject
for a simple external jar addition to a simple
project.

F-3 a second call occurs from JDT-UI to
JDT-CORE before the end of the trace.
After this call, there are no further calls
to JavaProject. We used Jinsight to in-
vestigate the two calls from JDT-UI to
JDT-CORE and found that the JDT-UI op-
erations invoked wereprocessDelta on
org.eclipse.jdt.ui.JavaElementContentProvider:
This method processes changes to the Java
model.

To verify that these features were of likely inter-
est in the performance tuning task, we also viewed
the trace from the optimized version with AVID.
We found:

• about the same number of calls from JDT-
CORE to JavaProject before any call to JDT-
UI.

• less calls—23 instead of 51—from JDT-
CORE to JavaProject after a call from JDT-UI
to JDT-CORE.

• no second call from JDT-UI to JDT-CORE.

3.1.2 AVID With Sampling

We sampled the unoptimized trace in a number of
different ways and viewed the resulting animations
to see if the features described above were evident.
Since none of the features involved memory, we
considered seven control-flow event samplings:

• C-1 with x set to 1000 (sample every 1000th
control-flow event),

• C-1 withx set to 100,

• C-1 withx set to 10,

• C-2 with x set to 1000 (snap call stack every
1000 events),

• C-2 withx set to 100,

• C-3 withx set to 10000 (snap call stack every
10000 timestamps). and

• C-3 withx set to 1000.

Our current dynamic information format when
the call stack is snapped results in a larger trace
than the original when x is set to less than 100 for
C-2 sampling and less than 1000 for C-3 sampling.

3.1.3 Results

Table 1 summarizes the results. The first column
describes the sampling parameters. The second
column reports the total number of bytes required
to represent the sampled information in AVID for-
mat. The third column reports the percentage,

7



Figure 5: AVID with Trace from Unoptimized Filesystem Problem

based on size, of the sampled dynamic information
compared to the trace dynamic information, which
was over 14.4Mb. The fourth column describes
whether the features were evident when viewing
the sampled information with AVID.

The table shows that we were not able to find
any evidence of usefulness for C-1 sampling, which
involves taking everyxth method entry or method
exit event. The difficulty is that this form of sam-
pling does not retain sufficient context about the
individual events. C-2 and C-3 sampling, which
involve snapshots of the call stack at everyxth
event or timestamp, show more promise. Neither
is able to fully detect the specific features we iden-
tified for the performance problem because these
features were all dependent upon the identifica-
tion of two calls from JDT-UI, which were appar-
ently not sampled. However, these kinds of sam-
pling were able to detect numerous calls from JDT-
CORE to JavaProject, which might lead a devel-
oper in the right direction for solving the problem.
These kinds of sampling required significantly less
data; the sampled data was 7 to 63% the size of the
original trace.

One might argue that simply seeing a “large”

number of calls, without the context of the JDT-UI
calls of interest, could be achieved by using a pro-
filer. This criticism is valid with our current sam-
pling parameters. If a developer determined that a
particular kind of event was important to solving
a problem, such as a developer positing that a call
from JDT-UI to JDT-CORE is of interest, it might
be helpful to state certain kinds of events that are
to be included in the sampled information, whether
or not they appear at a sample point. For instance,
a developer could state that any calls between JDT-
UI and JDT-CORE be included. We can currently
simulate the result of this kind of sampling direc-
tive by using AVID’s ability to intersperse sample
and trace data. We knew at what point the calls to
JDT-UI occurred. Thus, we set the sampling to de-
fault to C-3 withx=1000, but included trace data
around the JDT-UI calls. Prior to the first call from
JDT-UI to JDT-CORE, 18 calls were sampled from
JDT-CORE to JavaProject which is similar to Fea-
ture F-1.

8



Table 1: Sampling Results for FileSystem Problem

Sampling Parameters File size % of Original Size Results
C-1,x=1000 35K .3% No features are present
C-1,x=100 205K 1.8% No features are present
C-1,x=10 12% No features are present.
C-2,x=1000 793K 7% Partial support of F-2: No calls from JDT-UI are

shown, but 17 calls are present from JDT-CORE to
JavaProject at the end of the trace.

C-2,x=100 7.1M 63% Partial support of F-2: No calls from JDT-UI are
shown, but 47 calls are present from JDT-CORE to
JavaProject at the end of the trace.

C-3,x=10000 436K 3.8% Partial support of F-2: No calls from JDT-UI are
shown, but 17 calls are present from JDT-CORE to
JavaProject at the end of the trace.

C-3,x=1000 2.7M 24% Partial support of F-2: No calls from JDT-UI are
shown, but 17 calls are present from JDT-CORE to
JavaProject at the end of the trace.

3.2 Case Study #2

This case study focused on the “import from files”
operation. This operation adds files to an exist-
ing Eclipse Java project. The files are copied from
the source location into the location of the Eclipse
project workspace. This study considers Eclipse
versions 0.107 and 0.137. The former is theun-
optimizedversion, and the latter is theoptimized
version. Both versions use aPath class, which
represents and gets segments from a filesystem
path. In the unoptimized version, the implemen-
tation ofPath stored the resource location as one
String object: This object was parsed on the fly
to retrieve the segments. This implementation was
costly, both in terms of objects allocated and ob-
jects garbage collected. In the optimized version,
the implementation ofPath was changed to store
the segments in memory. Although moreString
objects are held in memory, fewer strings overall
need to be created and garbage collected, improv-
ing performance. The problem and the versions
were identified with the help of an expert Eclipse
developer.

3.2.1 AVID View

We used five entities in AVID to investigate the per-
formance problem:

• UI, representing the basic UI operations in

Eclipse,

• ImportWizard, representing the triggering of
the import operation,

• Path, representing the Path class of interest,

• Runtime, representing the Eclipse runtime
other than Path, and

• JDK, representing the classes comprising the
Java development kit.

The mapping file is shown in Figure 6. As in the
previous case study, this mapping is not the first
that a developer might specify. We separated out
the ImportWizard entity from the UI entity after re-
alizing that there were a number of operations hap-
pening involving the UI: We wanted an entity, Im-
portWizard, that would allow us to determine when
the behaviour of the import operation began. We
separated thePath entity based on our knowledge
of the problem. As with the previous case study,
a developer might iterate towards separating out
this entity based on their previous knowledge, or as
they investigated the problem with AVID and other
tools.

As before, we collected a trace from each of the
unoptimized and optimized versions that focused
on importing 60 files into a project. We then used
AVID to view the traces, and we found the follow-
ing features in the unoptimized trace which indi-
cated the problem:

9



category ImportWizard class org.eclipse.ui.wizards.datatransfer.*
category UI class org.eclipse.ui.*
category Path class org.eclipse.core.runtime.Path
category Runtime class org.eclipse.core.runtime.*
category Runtime class org.eclipse.internal.runtime.*
category JDK class java.*

Figure 6: Mapping File for Import Case Study

F-1 there are 4 calls to Path from ImportWizard,
and 62 calls from Path to the JDK, when the
ImportWizard is called.

F-2 roughly one-third of the way through the trace,
there are still 4 calls to Path from ImportWiz-
ard, and 159440 calls from Path to the JDK,
with over 21000 objects allocated in the JDK.

F-3 At the end of the trace, there are 1881 calls
to Path from the ImportWizard, and 253368
calls from Path to the JDK, with over 114000
objects allocated in the JDK.

We verified these features by viewing the opti-
mized trace. These views indicated:

• When the ImportWizard is called, there are no
calls to Path from ImportWizard.

• Roughly 1/3 of the way through the trace,
there are 12 calls to ImportWizard, 30 calls
from ImportWizard to Path, but far fewer calls
from Path to the JDK, only 435, and only 131
JDK objects allocated,

• At the end of the trace, there are 18 calls from
UI to ImportWizard (compared to 1 in the un-
optimized version), 1150 calls (many more!)
from ImportWizard to Path, but far fewer calls
from Path to JDK (137518) and far fewer JDK
objects allocated (22941).

3.2.2 AVID With Sampling

As before, we sampled the unoptimized trace in a
number of different ways and viewed the resulting
animations to see if the features described above
were evident. In this study, we considered both
control-flow and memory event samplings:

• C-1 with x set to 100 (take every 100th
control-flow event) and M-1 with x set to 100,

• M-3 with M-1 andx set to 1000 (take every
1000 memory event and snap the callstack),

• M-3 with M-1 andx set to 100, and

• M-3 with M-2 andx set to 1000 (take a mem-
ory event every 1000th timestamp and snap
the callstack).

3.2.3 Results

Table 2 summarizes the results. The format of the
table is the same as used for Table 1.

Since the features of interest in this case study
were largely based on the magnitude of calls or ob-
jects allocated, it was more difficult to determine
when a feature was present when viewing the sam-
pled data. We subjectively determined when the
number of calls or objects allocated would have
triggered further investigation, and used the terms
“partially evident” if it was possible that the num-
bers would have triggered action on the part of a
developer, and “somewhat evident” if it was pos-
sible, but less likely that the numbers would have
triggered a developer to act.

Table 2 shows that we again required context in-
formation to find the features of the problem. Thus,
we were successful when both control-flow and
memory events were sampled (C-1 and M-1) at a
relatively fine-granularity (i.e., every 100 events),
and when information from the call stack was in-
cluded in when sampling based on timestamps (M-
3 with M-2). In all of these cases, the sampled data
was significantly smaller than the original data,
ranging from 1% to 13% the size of the original
trace file.

4 Discussion

Based on our case studies, is it useful to software
developers to visualize and animate sampled data?

10



Table 2: Sampling Results for Import Problem

Sampling Parameters File size % of Original Size Results
C-1,x=100 & M-1,x=100 875K 1% F-2 is partially evident with 247 calls from

Path to JDK and 174 JDK objects allocated.
F-3 is somewhat evident with 490 calls from
Path to JDK and 1140 JDK objects allocated.

M-3 with M-1, x=1000 245K 0.3% No features are evident.
M-3 with M-1, x=100 2.2M 2.6% F-1 is partially evident with 3 calls to Path

from ImportWizard when ImportWizard is
called.

M-3 with M-2, x=1000 10.1M 12.5% F-2 is partially evident with 661 calls to JDK
from Path and 222 JDK objects allocated. F-3
is partially evident with 145 calls from Im-
portWizard to Path, 984 calls from Path to
JDK, and 1053 JDK objects allocated.

Is sampling the only way to deal with visualizing
and animating systems as they grow in size and ex-
ecution time? If visualizing and animating sampled
dynamic information may be useful, where should
we go from here? We discuss each of these ques-
tions in turn below.

4.1 Usefulness

Our case studies show that there exist some kinds
of sampling that, when the data is visualized and
animated, do retain some of the features of the per-
formance problem being studied. In these cases,
the sampled data is often much less than half, and
sometimes is just 10%, of the size of the original
trace. Such reductions could enable the collection
and subsequent analysis of data from longer run-
ning systems.

Our case studies also indicate that theanima-
tion of the sampled data was an important char-
acteristic, leading to helpful lines of questioning
about the sequencing of behaviour. For example,
in the first case study, the existence of unexpected
calls between the JavaProject and the UI architec-
tural entitiesbeforethe trigger call to the UI entity
suggests that a developer may need to investigate
how JavaProject is used in more detail. As another
example, recognizing linked growth patterns over
time in calls or allocations can be beneficial in iden-
tifying a performance problem; for example, in the
second case study, we noted the calls to JDK ris-

ing with the calls to the Path entity. Questions of
this form are less likely to arise if only summa-
rized sample data, such as produced by a profiler,
are viewed. The fact that animations of some kinds
of sampled data retained these features is encour-
aging. Since our focus in these investigations was
to determine if the features could exist in anima-
tions of sampled data, the question of whether a de-
veloper would notice such features in the sampled
data without prior knowledge of the animations of
the trace data is still open.

4.2 Scale

An alternative way to enable developers to more ef-
fectively analyze dynamic information from long-
running, large systems is to rely on on-line ap-
proaches rather than the off-line approach taken by
AVID. In an on-line approach, the visualization is
displayed as the data is produced from the execut-
ing system. When an on-line approach is used,
sampling is not necessary as a means of reducing
the amount of information collected. However, on-
line approaches can limit the kinds of analyses that
can be conducted on the information collected. For
instance, it may be difficult in an on-line approach
for a developer to investigate the sequence of be-
haviour without rerunning the system many times;
for some systems, it may be costly to rerun the sys-
tem. In these cases, it may be preferable to use an
off-line approach.

11



Sampling may also have a useful role to play
with on-line approaches if sampling, rather than
tracing, would perturb the system less when the dy-
namic information was collected, making it possi-
ble for a developer to investigate the behaviour of
the system of interest, rather than the system plus
tracing.

4.3 Next Steps

The work described in this paper provides a first
step towards understanding how the visualization
and animation of sampled dynamic information
could aid software developers. The next step in
evaluating the approach would be to have software
developers, likely in a controlled setting, attempt to
use AVID with sampling to solve performance tun-
ing and other tasks, without knowing the “solution”
to the task in advance. The next step in advanc-
ing the technology would be to collect sampled dy-
namic information from the execution rather than
sampling collected trace information.

5 Related Work

This paper has discussed the feasibility and utility
of visualizing and animating sampled dynamic in-
formation in the context of user-defined architec-
tural views of a software system. The intent of this
work is to enable the use of animated visualizations
for longer-running, larger systems. We thus focus
our comparisons to earlier work on tools aimed at
providing coarse-grained visualizations of software
system execution, tools that visualize sampled sys-
tem execution information, and approaches aimed
at reducing the size of traces.

5.1 Coarse-Grained Visualization

Two approaches have been taken to visualize larger
amounts of the execution of larger systems.

One approach is to display as much detailed in-
formation on the screen as possible. The informa-
tion mural work by Jeerding and colleagues takes
this approach [7]. Their work on execution murals
places classes on an axis and uses coloured single
pixel bars to indicate calls between the classes. The
result, an execution mural, is able to display thou-
sands of interactions on one screen. The authors
also describe applying this basic idea in a pattern

mural that displays sequences of calls (patterns)
that are automatically detected from the execution.
The view provided in such a mural does not sup-
port the investigation of the execution in terms of
architectural components.

The second approach is to display, in terms of
an architectural view, information about the exe-
cution. This approach is the one taken in AVID.
This approach was also taken by Sefika and col-
leagues [15]. Their approach differs from AVID in
two ways. First, they visualize coarse-grained in-
formation collected from the system rather than
abstracting fine-grained dynamic information as is
done in AVID. Using their approach, a developer
must a priori determine the abstractions of inter-
est, and must instrument the system to produce
that information. Second, their system executes
on-line. As we discussed earlier, an on-line ap-
proach bypasses problems associated with storing
the data, but it may limit investigations by a de-
veloper. As an example, a developer who wishes
to view a portion of the execution from a different
coarse-grained view, must reinstrument and re-run
the system. When running the system to the point
of interest is expensive in terms of set-up time or
equipment, an off-line approach may provide more
flexibility.

Grundy and Hosking’s SoftArch system also
uses architectural views to display dynamic infor-
mation [4]. With SoftArch, a developer creates an
architectural model of interest and describes the re-
finement of that model to classes using UML di-
agrams and refinement links [14]. As the system
executes, events associated with classes are for-
warded through the refinement links to the archi-
tectural views. A developer can access a variety
of visualizations, including colors to denote object
allocations associated with architectural entities,
bar graphs of method invocations, and dialogs of
cached method invocations that have occurred. No
performance information about SoftArch is avail-
able. Similar to AVID, SoftArch maps fine-grained
execution information to the architectural view and
may thus have similar issues regarding the visual-
ization of larger, longer-running systems.

5.2 Visualizing Sampled Data

Thegprof tool is perhaps the most common tool
that software developers use that involves the vi-
sualization of sampled data to aid software engi-

12



neering tasks. This profiling tool primarily pro-
duces information about the time spent in parts of
the program in terms of the call graph of the pro-
gram [3]. The tool samples the program counter,
and infers execution time from the samples in the
program. The tool displays the summarized exe-
cution time in the context of the call graph. The
use of sampling in AVID differs in two fundamen-
tal ways. First, the sampling is not intended to be
used as a means of estimating the time spent in a
piece of the program, and thus, AVID supports a
number of different kinds of sampling, both event
and timestamp based. Second, AVID supports the
animation of the sample data;gprof presents a
summary of the sampled data at the end of execu-
tion. Thegprof tool was developed for programs
written in C; tools, such as JProbe, provide support
similar togprof for Java.

A number of tools that are intended to help im-
prove or steer the performance of parallel or dis-
tributed programs use sampling as a means of re-
ducing the amount of data considered. An example
of such a tool is the PVaniM system that supports
on-line and post-mortem visualization of network
computing environments [16]. The on-line visu-
alizations rely on sampled data; the post-mortem
visualizations rely on trace data. The on-line visu-
alizations include host views in which the average
number of jobs in the run queue of each host is dis-
played, and a communication matrix view showing
aggregate and interval statistics regarding message
communication. These views are updated accord-
ing to a sampling rate set by the user. The most
similar view to AVID is the communication ma-
trix view, which is categorized as a debugging view.
The authors note that “[a]lthough the level of detail
is reduced compared to its postmortem counterpart,
in many cases the view is still able to provide some
initial indication of anomalous behavior” [16, p. 9].

5.3 Trace Compression

A number of techniques have been developed to
collect and store trace information [11]. These ap-
proaches have largely focused on the efficient col-
lection and representation of detailed execution in-
formation, such as which data locations are refer-
enced. These techniques often use static analysis
of the program text to determine the appropriate
points to use to create a minimal amount of trace in-
formation. These techniques were developed to as-

sist in the design of memory systems, and to guide
the behaviour of parallelizing compilers; less de-
tailed traces are needed for the software engineer-
ing tasks we are supporting.

One approach to reducing the size of traces to
support software engineering activities was men-
tioned above. Sefika and colleagues reduced the
size of trace information visualized by having the
developer build architectural instrumentation into
the system. As described above, this approach lim-
its the views a developer can use to view the sys-
tem. It is unclear if the amount of information pro-
duced is sufficiently reduced to support the visual-
ization of long-running systems.

Reiss and Renieris take a two-phased approach
to reducing the size of traces: they select subsets of
the data and compact it, and then they encode the
data in a way that allows the structure of the data
to be inferred [13]. An example of a first phase ap-
proach is limiting the collection of dynamic infor-
mation to a certain set of classes in the system. This
approach is also supported by AVID: A developer
can specify parts of a system for which dynamic
information should not be retained. An example of
a second phase approach is to use run-length en-
coding or to build a finite state automaton that is
representative of the trace. The approaches Reiss
and Renieris use in the second phase tend to focus
on one kind of event, specifically calls, and focus
on the aggregation of statistics, such as number of
calls, into the encoded representation. These en-
codings are not well suited to an animation style
visualization.

Hollingsworth and colleagues describe a hybrid
approach to instrumenting a large-scale parallel or
distributed application that is detailed, frugal and
scalable [5]. In their approach, detailed, exact met-
rics are collected about resource usage, such as the
time spent in a procedure. These exact metrics are
then sampled. This approach permits accurate re-
porting of a metric at some chosen frequency. This
approach is well suited to cases where an aggre-
gate statistic is to be reported against some struc-
ture, such as procedures. To be applicable to an-
imated visualizations such as AVID, the approach
would need to be extended to provide some tempo-
ral ordering of the information, such asx calls hap-
pened between these two entities and theny calls
happened between another two entities, and so on.

13



6 Summary

AVID supports the off-line visualization and ani-
mation of the execution of a Java-implemented ap-
plication in the context of an architectural view de-
fined by the user. This paper describes the ad-
dition of sampling support to AVID, and our ini-
tial investigations into the utility of this sampling
support. Our intent in adding support for visualiz-
ing and animating sampled dynamic information to
AVID was to allow AVID to scale to larger, longer-
running systems.

We found that visualizing and animating sam-
pled dynamic information can be potentially use-
ful to a software developer. We found that any
dynamic information that is sampled must include
sufficient contextual information to support inter-
pretation of the animation. Specifically, we found
utility when we sampled everyxth event or times-
tamp, and when we, at that point, also took and
reported a snapshot of the call stack: the call stacks
can be compared to add contextual information into
the animation. In our two case studies, these kinds
of sampling led to dynamic information that was
significantly smaller, often only 20%, the size of
the original trace-based dynamic information

Acknowledgments

This research was funded by the Consortium for
Software Engineering Research (CSER) in coop-
eration with Object Technology International. An-
drew Catton, Thad Heinrichs, Robert Walker, and
Albert Wong contributed to the implementation of
AVID. “Java” is a trademark of Sun Microsystems.

About the Authors

Andrew Chan is a M.Sc. student in the De-
partment of Computer Science at the University
of British Columbia. His research interests are
human-computer interaction and software engi-
neering. He may be contacted at chana@cs.ubc.ca.

Reid Holmes is a M.Sc. student in the De-
partment of Computer Science at the University
of British Columbia. His research interests are in
refactoring and extreme programming. He may be
contacted at rtholmes@cs.ubc.ca.

Gail Murphy is an associate professor in the De-
partment of Computer Science at the University of

British Columbia. She is interested in creating and
evaluating methods and tools to help software de-
velopers manage and evolve software systems both
at design time and in source code. She may be con-
tacted at murphy@cs.ubc.ca.

Annie Ying is a M.Sc. student in the Department
of Computer Science at the University of British
Columbia. She is interested in data mining and
software engineering. She may be contacted at ay-
ing@cs.ubc.ca.

References

[1] http://www.cs.ubc.ca/∼Murphy/AVID.

[2] http://www.eclipse.org.

[3] S.L. Graham, P.B. Kessler, and M.K. Mcku-
sick. Gprof: a call graph execution profiler. In
Proc. of SIGPLAN ’82 Symposium on Com-
piler Construction, pages 120–126, 1982.

[4] J.C. Grundy and J.G. Hosking. High-level
static and dynamic visualization of software
architectures. InProc. of IEEE Symposium
on Visual Languages, pages 5–12, 2000.

[5] J.K. Hollingsworth, B.P. Miller, and
J. Cargille. Dynamic program instru-
mentation for scalable performance tools.
In Proc. of Scalable High-Performance
Computing Conf. (SHPCC), pages 841–850,
1994.

[6] http://www.sourceforge.net/projects/jarp.

[7] D. Jerding, J.T. Stasko, and T. Ball. Visual-
izing interactions in program executions. In
Prof. of the Int’l Conf. on Software Engineer-
ing (ICSE), pages 360–370, 1997.

[8] http://www.sourceforge.net/projects/jhotdraw.

[9] http://www.research.ibm.com/jinsight.

[10] http://www.sitraka.com/software/jprobe/jprobeprofiler.html.

[11] J.R. Larus. Efficient program tracing.Com-
puter, 26(5):52–61, 1993.

[12] W. De Pauw, R. Helm, D. Kimelman, and
J. Vlissides. Visualizing the behavior of
object-oriented systems. InProc. of the ACM

14



Conf. on Object-oriented Programming Sys-
tems, Languages, and Applications (OOP-
SLA), pages 326–337. ACM Press, 1993.

[13] S.P. Reiss and M. Renieris. Encoding pro-
gram executions. InProc. of the 23rd Int’l
Conf. on Software Engineering (ICSE), pages
221–230. ACM Press, 2001.

[14] J. Rumbaugh, I. Jacobson, and G. Booch.
UML Reference Manual. Addison Wesley,
1998.

[15] M. Sefika, A. Sane, and R.H. Campbell.
Architecture-oriented visualization. InProc.
of ACM Conf. on Object-Oriented Program-
ming Systems, Languages and Applications
(OOPSLA), pages 389–405, 1996.

[16] B. Topol, J.T. Stasko, and V. Sunderam.
Pvanim: a tool for visualization in net-
work computing environments.Concurrency:
Practice and Experience, 10(14):1197–1222,
1998.

[17] R.J. Walker, Gail C. Murphy, Jeffrey Stein-
bok, and Martin P. Robillard. Efficient map-
ping of software system traces to architectural
views. InProc. of CASCON 2000, pages 31–
40, 2000.

[18] R.J. Walker, G.C. Murphy, B.N. Freeman-
Benson, D. Wright, D. Swanson, and J. Isaak.
Visualizing dynamic software system infor-
mation through high-level models. InProc.
of the ACM Conf. on Object-Oriented Pro-
gramming Systems, Languages and Applica-
tions (OOPSLA), pages 271–283. ACM Press,
1998.

15


