
Visual Separation of Concerns through Multidimensional
Program Storage

Mark C. Chu-Carroll
IBM T. J. Watson Research Ctr
19 Skyline Dr, Hawthorne NY
mcc@watson. ibm.com

James Wright
IBM T. J. Watson Research Ctr
19 Skyline Dr, Hawthorne NY

jwright @ watson, ibm .com

Annie T. T. Ying
Department of Computer

Science
University of British Columbia

Vancouver, BC, Canada
aying@cs.ubc.ca

ABSTRACT
Aspect-oriented software development (AOSD) has primarily fo-
cused on linguistic and meta-linguistic mechanisms for separating
concerns in program source. However, the kinds of concern separa-
tion and complexity management that AOSD endeavors to achieve
are not the exclusive province of programming language design.

In this paper, we propose a new model of concern separation
called visual separation of concerns (VSC), which is based on a
new model of program storage. By altering the mechanisms used
to store and manipulate program artifacts, much of the capability
of concern separation can be captured without performing any lin-
guistic transformations. We also describe our implementation of
VSC, which is based on Stellation, an experimental software con-
figuration management system. The VSC approach combined with
software configuration management can have advantages over con-
ventional approaches by avoiding program transformations, by pro-
viding persistent storage of features such as concern maps, and by
enabling new techniques for concern identification and manipula-
tion.

1. INTRODUCTION
Separation of concerns is one of the central tenets of proper

software design and engineering. As software complexity has in-
creased, tool and language designers have developed new tech-
niques for managing that complexity through the separation and
management of distinct concerns.

One of the most recent efforts in this direction is aspect-oriented
software development (AOSD)[29], which is based on the recogni-
tion that concerns are often difficult to separate because they follow
different fundamental semantic structures. Since most current pro-
gramming languages require semantic structures to be reflected in
the basic syntactic structure of a system's code, and dictate that
there is exactly one dominant semantic structure to the system, this
means that some concerns must be implemented in a way that cuts
across the basic structure of the system. Tart et al have termed this
problem the Tyranny oft he Dominant Decomposition[31].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 2003 Boston, MA USA
Copyright 2003 ACM 1-58113-660-9/03/002 ...$5.00.

AOSD addresses this problem by allowing cross-cutting con-
cerns to be managed, either by allowing a cross-cutting concern
to be sliced out of a program, or by allowing concerns to be imple-
mented separately and then integrated together. Most techniques
in both categories are based on some form of semantic or linguis-
tic transformation of the program, either slicing aspects out of the
program into independent semantic units, or through the use of lan-
guage extensions or meta-languages to describe how semantically
independent implementations of different concerns should be com-
posed into a single integrated semantic unit.

We propose a different approach for aspect-oriented separation
of concerns, called visual separation of concerns (VSC). VSC presents
separate views of cross-cutting aspects, allowing programmers to
read and edit aspects in isolation, while leaving the semantic struc-
ture of the system untouched. The visual technique is based on a
new model of program storage that separates notions of storage,
language semantics, and program organization. By doing this, it is
possible to allow programmers to view their system through mul-
tiple, overlapping, editable organizations of the system, each of
which presents concerns separated by a different criteria; each or-
ganization represents a decomposition of the system according a
different dimension of concern.

2. THE PROBLEMS WITH COMPOSITIONAL
AOSD

Typically, aspect oriented systems separate concerns linguisti-
cally, by either extending programming languages, or by provid-
ing a compositional metalanguage. In the former approach, typ-
ified by AspectJ[20], constructs are added to the language which
programmers use to implement cross-cutting aspects, which are
then composed into the primary semantic structure of the system
at compile time. In the latter approach, typified by HyperJ[23] and
Composition Filters[4, 5] concerns are implemented separately as
complete components using standard programming language se-
mantics, and those separate concern implementations are then com-
posed together at compile time through the use of a meta-language
describing how the different concerns should be integrated.

We believe that these compositional approaches have two weak-
nesses: invisible semantic transformation, and scatter. We will dis-
cuss each of these in greater detail.

It should be noted that we do not believe that the visual technique
is a replacement for compositional AOSD systems; compositional
techniques provide powerful capabilities that can yield significant
benefits in dealing with the complexity of large software systems.
However, we believe that the benefits of the visual technique are
synergistic with those of compositional AOSD tools. We believe

188

that in many cases, the benefits of the visual technique are large
enough that full compositional techniques are not needed; and fur-
ther that when this is the case, avoiding the program-transforming
properties of composition is a significant benefit.

2.1 Invisible Semantic Transformation
By invisible semantic transformation, we mean that composi-

tional approaches generate executable code in which code may have
been inserted by aspect composition which has significant effects,
but where the potential for these effects are not signaled in the pre-
composition source code.

For example, in AspectJ, programmers implement aspects by
specifying join points in standard Java code, and providing a body
of code to be inserted at program locations that match that join
point specification. The target of the composition is a standard Java
source file, with no indication of the possibility of other code being
inserted. A programmer unfamiliar with the aspect composition
scheme in use could easily be confused, because composed code
can alter the visible state of the system in ways that appear impos-
sible in the original code. There is no indication in the basic Java
code that the code in the class source file is not semantically com-
plete. The programmer needs to understand the full aspect system
in order to understand their code, and there is no direct way of iden-
tifying all of the aspects being composed except by looking at the
build process.

Thus, in compositional systems, the final executable structure of
the program does not precisely match the structure expected from
reading the source code of any standard semantic unit of the pro-
gram. While the benefits of AOSD are significant, the problem of
invisible semantic transformation, particularly during the ongoing
process of software maintenance, should not be discounted.

2.2 Scatter
Scatter, while closely related to invisible semantic transforma-

tion, is in some sense a deeper issue. It is a direct manifestation
of the application of abstraction in programming language design.
The same linguistic tools that provide the capability to separate
concerns also produce a non-trivial negative effect on the readabil-
ity and traceability of code. Scatter is our term for the effects of
abstraction and indirection in programming languages causing the
flow of control through a program to become increasingly indirect.
We call it scatter because the common manifestation of this prob-
lem is that the flow of control for a particular operation is scattered
through many different storage units, making it difficult to view or
understand as a consistent whole.

In early programming languages, programs were quite small and
monolithic, and control flow was straightforward and easy to fol-
low. Over time, monolithic programs became too complex, and
structured programming introduced named subroutines to help man-
age complexity. Understanding specific control flow became a bit
harder, but there were significant gains in both expressiveness and
in the manageable complexity of the system. In our terms, this
introduced the first layer of scatter: instead of a straightforward
control flow, control now jumped in and out of named units, and
understanding the execution stack became crucial to understanding
program execution.

Object-orientation introduced a significant new layer of scatter:
with objects, a name now referred to a family of type-related sub-
routines, with a particular subroutine selected dynamically at exe-
cution time. To understand flow, the programmer needed to under-
stand the type structure of the system, and the ways in which names
would be bound during execution. This means that to understand an
operation, a programmer needs to follow its code through multiple

I:t~ort. i] av~ ~.ut J.~ ;Carp ~1

Figure 1: Example of division of a Java class into fragments

class definitions, which may be scattered through multiple source
files. In a complex program, understanding control flow could in-
volve viewing dozens of source files.

Aspect-orientation can introduce yet another layer of scatter. A
particular operation may still involve methods defined in many dif-
ferent classes, but now, each of those methods may be assembled
from a collection of aspect sources. To understand the system, the
programmer must understand all of the classes in a/l of the separate
concerns, and how they will all be composed together.

Each step in this process of programming language evolution in-
troduced significant, expressive tools that allowed programmers to
work with vastly more complex systems. But at the same time,
each step introduced more scatter, and this scatter produced signif-
icant new issues of its own. The scatter effect must be considered
when designing and implementing a system. When introducing a
new aspect or a separating out a new concern, programmers need to
consider whether the benefit of that separation outweighs the added
scatter.

A major advantage of the visual concern separation approach is
that it counteracts scatter. With a VSC tool, a programmer can view
code with concerns separated when it is valuable to separate it, but
they can also view the code through a non-separated non-scattered
view.

3. VISUAL SEPARATION OF CONCERNS:
A NON-COMPOSITIONAL APPROACH
TO AOSD

We propose a different approach, which we call visual separa-
tion of concerns (VSC). Instead of providing linguistic methods
of separating concerns through modification of the programming
model, VSC is based on separating concerns by modifying the stor-
age model.

In conventional tools, programmers store code using source files.
The location of an element of code within a source file can express
either semantic properties (class membership, name scope), or or-
ganizational properties (related methods will often be closely co-
located). A file-based storage system forces programmers to place
program elements in exactly one position, strictly limiting storage
structure as an expressive mechanism. We believe that this is a
problem very similar to the tyranny of the dominant decomposi-
tion, and have thus termed it the tyranny of source files[9].

In the VSC approach, storage is not in terms of files, but in terms
of smaller fine-grained elements called fragments. Fragments con-
sist of atomic units of code from an underlying programming lan-
guage, with a linkage to their semantic context. Unlike the sim-
ilarly named fragment construct of programming languages like

189

" ~A E~"~ Available V5F Files ===
=== o r 9 . e c l i p s e . s t e l l a t i o n . s ~ . . v:.~,.~:~/SFFSFac t o r y = T y p e 6 m " r ~ =i~i ~~L"~) 5earchResults 5earchResults . (' ¢ 5 F) / V S I =

Ivoid annotate(IFile vdFile, Fraglnfo[] info) .~.
:~,'5F Factory h IMarkere of type, IVSF Fragmentl. FRAGMEN~7~
~rg,edipse,stellation,scm,vsf - ~"~

prlvate vo}dlaD/IoSate(J~'ile vsfFile, FragInfo[] info) { ~,
try { :':~'~

// remove any previous markers - - otherwise, old ones ~ :~;.~1
vsf Fi 18. delet eMarkers (IVSF Fragment.. FRAGMENTMARKER; tr~ ~
for(int-iX = O: iX < info length; iX++) { :~

FragInfo frag = info[iX] ; ~;'

."'~t~ IRegion create3avaE!ementsFromSea

Popup Fragment
Annota t ion

if-(frag == null) ~i
,continue; :,:{~:

IMarker marker = v~fFile createMarker(IVSF_Fra~'
~arker.~e~Attribute(I,Marker.CHAR_START, (rag.stt~i~,~
marEer.~etAttribute(IMarker. CHAR END, frag.end)~!~
~arker,~etAttribute(IMarker. MES~AGE, frag.nage)~
marker.~etAttribute(IMarker.LOCATIOM, frag.loca;:~
marker.~tAttribute(iMarker. LIHE NUMBER, -11; -i~!

}
} catch (CoreException 8) { ~

V~FPlugin.log(.e..getStatu~()): ~%~=
}

} VS, F Editor ~

~ H × / / / × / × / × / × / / / / / / / / / / / × / / / × / / / × / / × / / / × / / / × / / / / × / / / ~

Ft,~gment Marker ((Double-dick to jump to Jan =ouec¢) ~:

* Create and return an IRegion containing all IMethod element~
N current project that contain at least one search marker. %~
~/~ Returns an eaptg IRegion if no markers ware found. ~

public IRe~ion createJavaEl~ment~FromSearchMarker~() { ~.~
IRegion ele~enge = JavaCore.newRegion(); ~?)

"'i~..-~ I~vaEleraent FindElemenK/Markor~m,
i""'~ y0!dru~) -'- ofg;adipse;stellatioh~s~
i,.-.~1 L!stg~Mar~rsO -- org;'edipSefstdl¢
)"..,~. IMarker chooseMarker(List" market;s)'
i ' " ' ~ vold FragrnercElement(Xgdaptable:l~
i..-~ :IMarker getMarkerO .- orgleckp~e,S!
i:..~-~l ObjectgetProperl;yValue(obieCt id)~
!--.~Vvoid getMarker(IMarke r marker) -: or i
i.--,~1 :IMarker getMarkerO -* org:ec~pse;st[
i...~ ~1.5trifig getHoverInl:o(ISourceVibwer ~i
i"":~-String formatFragmantLabel(IHarker i
i " ~ :void VSFMarkerAnnOt ation:~IMarkei'i m
i,'-'~1 void initialize() -- org. eclipse,stellatiOi

i " [] RarkerAnnotation CCeateMarkerAnndi
i...~1 ;void recreateAnnotationsO -org,e d
i " l~ l IMarker[] tetrieveMarkersO -- org,ec

. .- . . ,~ void deleteMarkers(ZMarker[] rnarker ~
:.".~1-boolean i~cceptalsle(IMar~r markerl

. i '"~ Fragment:Element[] getFragment~IFii
!'--'~1 String formatFragment:Label(IMarker i

/
V S F l~ont(~nt Outline

Figure 2: Screenshot of a VSF Editor with an Aggregate Outline

Beta[22], code fragments are not a semantic construct: a fragment
is specific atomic segment of code in a particular semantic con-
text determined by its position in a canonical view of the program.
The size of a fragment is dependent on the underlying language:
it consists of the smallest identity-preserving element in the lan-
guage structure. For example, in Java, fragments consist of meth-
ods, fields, etc. (The division of a java source file into fragments
is illustrated in figure 1.) Programmers then view and manipulate
code through source-file like code views, called virtual source files,
which are generated from dynamically selected collections of frag-
ments. Programmers use the dynamic selection mechanism to pro-
duce code views that reflect decompositions of the system accord-
ing to different dimensions of concern. These code views have no
semantic effect on the program: programmers view collections of
fragments through VSFs, but the fragments are still compiled and
executed in their original semantic context.

For example, figure 2 presents a screenshot of the Eclipse IDE
extended to edit VSFs. The VSF Editor (left) presents views a set
of source fragments selected by some criteria (in this case, methods
using the interface lMarker). Fragments which meet the criteria are
included in the VSF view, separated by a narrow horizontal separa-
tor; a thicker separator is used to denote type (source file) bound-
aries. The Content Outline on the right lists all fragments in the

current VSE The underlying source code semantics are unaltered.
VSC is a powerful technique enabling programmers to view con-

cerns in isolation, without transforming the structure or semantics
of the program. Although the VSC technique does not have the
full power of compositional approaches, it allows programmers to
gain much of the benefit of concern separation without confronting
the additional complexity of compositional systems, or the scatter
related problems that they cause.

The VSC model has one very significant advantage over the com-
positional techniques: it enables the creation of concern views,
similar to the viewpoints of Finkelstein[15], that integrate prod-
ucts from different phases of the development process. For exam-
ple, a concern view can present the documentation of a concern,
the analysis requirements that led to the concern, design diagrams
describing the implementation of the concern, and the code that
implements that concern together in one consistent view or set of
views.

3.1 Separating Concerns without Composition:
an Example

For example, consider figure 3, which represents a illustratory
subset of code implementing a distributed software development
environment. In this system, the UI is dynamically assembled from

190

~ con~ ConunEngine. java $ I

package model

..... doljava i'

l []Jovoprojjovo l

l | k jav. 1

[iljava I
l J ield.java i i

[...... hod.java [] I

package ul
[i UITrack. java [
I ~IView. java I

UIWindow.java I

UIDrlver.java

Figure 3: An illustration of scatter in an object-oriented appli-
cation

contributions provided by dynamically loaded components. The
horizontal boxes correspond to Java source files and the package
directories containing those source files in a conventional file-based
storage system. The irregular shaded boxes correspond to code
involved in the menu generation process. In the standard source-
file view (in the complete system), this menu generation process is
scattered through 30 different source files.

The shaded code could be considered a menu generation concern
or a aspect. But in practice, this is a very abstract, highly scattered
concern which involves: (a) pieces of the basic communication sys-
tem including message generation and dynamic subscription; (b)
the production of XML documents describing menus (c) the reg-
istration of event types and listeners for the UI; and more! In an
Aspect J-like model of AOSD, there is no useful way to capture an
aspect or concern like this, because this aspect itself involves so
many other aspects. Any encapsulation of this using Aspect-J as-
pects will create a huge amount of scatter, almost certainly adding
enough scatter-based complexity to the system to outweigh the ben-
efits of encapsulation.

In a system like HyperJ, menu generation in this system corre-
sponds to a hyper-slice or hyper-module: a collection of code that
when viewed through the lens of menu generation is presented as
a complete concern. This is a better solution than that afforded by
AspectJ, because it does allow this abstract concern to be encap-
sulated and represented; however, there are numerous interactions
between this code and other code in the surrounding context of each
of the highlighted chunks. To understand the full impact and inter-
action of this code in surrounding context, a developer must be able
to understand the code both in isolation as an encapsulated concern,
and in context as a part of the complete components where the var-
ious fragments of the menu generation will execute. In the HyperJ
model, this is possible: hyperslices can overlap, and the same code
can be viewed in the context of different hyperslices. However,
because of the semantic transformation of the code in the process
of slicing, the programmer will need to carefully reconcile the two
different transformed code selections.

In the visual separation model, the system can generate an encap-
sulated view that presents the complete menu generation concern as
a single virtual source tile view. At the same time, the programmer
could see the standard Java source organization in another view.

Changes made in either view will immediately appear in both. The
programmer can freely switch between views, without having to
deal with any reconciliation: the code seen in both views is identi-
cal, untransformed.

The VSC model can thus reduce the scatter issue: languages may
scatter code, but VSC tools can gather code together when nec-
essary, while still allowing the programmer to reap the linguistic
benefits of concern separation. Further, programmers can avoid in-
troducing scatter in places where visual separation is sufficient, and
linguistic separation is not necessary. Finally, when the use of ad-
vanced tools like HyperJ or AspectJ is necessary, visual separation
can help reduce the scatter complexity introduced by the features
of these languages: programmers can select views that co-locate all
of the code that will be composed into a single execution unit.

3.2 Requirements for Visual Separation of Con-
cerns

For a system to support visual separation of concerns, there are
a small number of requirements:

1.

2.

3.

Fine-grained fragment storage. A VSC system must store
program artifacts as fine-grained units. The core VSC func-
tionality is based on dynamically re-arranging the code into
different views, and changes made to a fragment in any one
view should be immediately reflected in all other views con-
taining that fragment. This means that the basic storage model
must be built around fine-grained storage and manipulation
of program fragments.

Aggregation. A VSC system must provide some mechanism
for combining collections of fine-grained program a_tifacts
into larger source file-like views.

Dynamic Fragment Selection. A VSC system must provide
some mechanism for selecting the set of fragments to be
presented in a particular view. Possible realizations of this
mechanism include (but are not limited to) a query language,
a pattern-matching facility, or a browser tool for selecting
related artifacts.

4.

5.

Fragment-aware editing tools. The VSC model is fundamen-
tally based on a radically different storage model. The sys-
tem needs some kind of program editing tool that allows pro-
grammers to work with the virtual source files generated by
the system.

Internalization/Externalization facilities. Most common tools
used by developers, including compilers, debuggers, and pro-
fliers do not support the sort of fine-grained storage systems
provided by a VSC system. Thus, the system must provide
some mechanism for externalizing sets of fine-grained arti-
facts as standard source files for manipulation by conven-
tional tools.

4. VISUAL SEPARATION OF CONCERNS
AND SOFTWARE CONFIGURATION MAN-
AGEMENT

The primary focus of our work has been on advanced software
configuration management (SCM) functionality in the Stellation
system. Our visual separation of concerns model is derived from
our work on multidimensional software configuration management,
as described in [7, 8, 30, 10, 9]. We believe that a software config-
uration management system tightly integrated with a programming

191

SlotType = AtomicType [CollectionType
AtomicType = PrimitiveType [SemanticType] UnionType
PrimitiveType = Integer [String [Text [Binary
SemanticType = language specific atomic type
java_method_decl)
UnionType = AtomicType "or" AtomicType ...
CollectionType = Set of AtomicType] List of AtomicType

Figure 4: Aggregate Slot Types Summary

(e.g.,

environment is the appropriate platform for building visual separa-
tion of concern tools. SCM systems are among the most ubiqui-
tous tools used by software developers, and are the primary mecha-
nism that programming teams use for storing programs and sharing
work. Thus, for most developers, integrating VSC into an SCM
system provides the most natural interface to this functionality.

Beyond the basic VSC functionality we will describe, integrat-
ing it with SCM provides several unique facilities. These are made
possible by taking advantage of the versioning capabilities of the
SCM system to provide versioning of both the fine-grained units,
and the larger aggregates assembled from those fine-grained units.
In particular, it enables a flexible mechanism for managing the his-
tory of concern mapping within a system; for using data mining and
machine learning mechanisms for concern identification; and even
for providing stronger integration of compositional AOSD systems
with other tools.

4.1 Implementing VSC though SCM in Stel-
lation

We are implementing our VSC model in the Stellation SCM sys-
tem. Stellation is an experimental SCM system being developed as
a research technology subproject of the Eclipse development envi-
roament[12].

Stellation is currently being implemented with VSC support for
Java. Our implementation of the fine-grained versioning require-
ment is straightforward, but our mechanisms for aggregation,fragment
retrieval, and externalization require elaboration.

4.1.1 Aggregation in Stellation
A detailed description of the Stellation aggregation mechanism

can be found in [10].
Aggregation is our mechanism for combining groups of frag-

ments into larger structures. This aggregation facility is required
for building dynamic views. But an aggregation facility is useful
for far more than just simple source views: in fact, aggregation is
the key that enables many of the particularly powerful capabilities
of Stellation. Aggregation is a general purpose metadata mech-
anism that allows Stellation to manage relationships and concern
maps, to provide a mechanism for other tools to integrate thier data
into a Stellation repository, and to provide data integration facilites
for linking data from multiple sources or multiple phases of the
development process.

This aggregate system allows programmers to define types of ag-
gregates to represent different repository data and metadata struc-
tures. The type system allows programmers and tools to differenti-
ate between aggregates created for different purposes, and to allow
aggregates to have enough structure to represent complex data and
relationships. An aggregate type looks like a type definition in a
programming language: it consists of a set of named slots, each of
which declares a type and a merge operator. Slot types are summa-
rized in figure 4. A set of sample aggregate type declarations are
illustrated in figure 5a.

Programmers can dynamically define and evolve aggregate type

definitions. Any aggregate type whose slots contain artifacts that
can be viewed using the Stellation UI can be presented as a view.
For example, a developer could define an aggregate type to rep-
resent the relationship between a set of of requirements, and the
fragments of code that implement those requirements. Once rep-
resented as an aggregate, that relationship can be versioned, main-
taining the correct associations throughout the evolution of the sys-
tem; it can also be presented as an editable view within the pro-
gramming environment.

4.1.2 Artifact Selection in Stellation
To take advantage of the aggregate mechanism, both users and

tools require some mechanism to dynamically create and populate
aggregates. In order to do this, Stellation provides a query lan-
guage, and allows programmers to populate the slots of an aggre-
gate using queries. The query language is extension based, allow-
ing programmers to provide components for adding new predicates
and new conjugates to the query language.

In addition, since the query language itself is implemented as
an extension component, developers can add new forms of queries
beyond the "built-in" query language, including pattern matchers,
query-by-example, or even a full logic programming language.

An example of query-based aggregate generation can be seen in
figure 5b. This example illustrates how our aggregation mechanism
creates source-file-like aggregate views that present a cross-cutting
concern in a single source file, in this case producing the virtual
source file corresponding to the scattered concern in figure 3. The
UI for this system assembled menus by having a method named
"populateMenus", which sent a message asking for contributions
to the menu from different components, and then waited for contri-
butions sent as responses. Following the control flow of the process
of generating menus for a real system was extremely complicated:
it involved methods from approximately 30 classes. In a conven-
tional storage system, that required the programmer to trace code
through 30 different files! In Stellation, the programmer can select
a functional view that presents all code involved in this process in
one place.

The work on Stellation has been largely independent of work
in aspect-oriented programming languages - but it is noteworthy
that the query language, which is being developed based on spe-
cific functionality requirements from users, naturally acquired con-
structs similar to AspectJ's join point specifiers, as seen in this ex-
ample. More examples of our query language, and a description of
how the query language can be implemented efficiently are found
in [10].

4.1.3 Artifact Externalization in Stellation
Externalization is the capability to take an aggregate artifact within

a Stellation repository and translate it into a form which can be
used by external tools. There are two key pieces to this process:
export (take an aggregate within the repository and translate it into
its external form), and import (take an externalized aggregate, and
translate that back into an internal form, generating a new version
if the aggregate was modified).

Our approach to externalization is based on the use of standard
XML tools. The XML community has done extensive work on
document transformation using XSLT[13] and XML formatting ob-
jects[25]. We export all aggregates into an XML format defined by
an aggregate schema, and then allow developers to use an XML
tool to translate the resulting document into a desired format. Im-
port is handled similarly: developers use external tools to Iranslate
their external form back into the Stellation XML schema, and the
result is reintegrated into the repository. We plan to provide im-

192

aggregate java_class
name: [conflict] String
package: [conflict] java_package_decl
imports: [union] java.import_decl
decl: [conflict] j ava_class_decl
members: [linear] java.member List

)

aggregate java_viewpoint {
name: [conflict] String
description: [linear] Text
members: [dynamic] java_member List

)

aggregate bug_report {
title : [conflict] String
severity : [largest] Integer
description : [conflict] Text
subject_code : [dynamic] java.member_decl Set
test_data : [union] test_case Set

}

aggregate specifies_relationship {
specification : [union]Z_fragment Set
implementation : [union]java_member_decl Set

}

(a) Aggregate Type Examples

menu_mgmt = new java_viewpoint {
name = "menu management"
description = "Menu management component of functional decomposition"
members = all m :java_method]

m calls subscribeCmenu.contfibution.request", *, *)
OR m.name = contributeMenu OR m.name = UIDriver.populateMenus
OR m calls sendMessageCmenu.contribution", *, *)

)

(b) Aggregate population examples

Figure 5: Aggregate X)~pe Declaration and Population Examples

<Aggregate type="java_class" id="23">
<Field name="name"><String>project.util.StringMap</String> </Field>
<Field name="package">

<Semantic type="Text" label="java~ackage~ecl" id="27">
package project.util;
</Semantic></Field>

<Field name="imports"><Set type="java_import_decl">
<Semantic type="text" label="java~mport_decl" id="42">
import java.util.Map;
</Semantic>
<Semantic type="text" label="java~mport_decl" id="43">
import java.util.HashMap;
</Semantic>

</Set></Field>
<Field name="decl">

<Semantic type="Text" label="java_class_decl" id="29">
class StringMap implements Map extends HashMap
</Semantic>

</Field>
<Field name="members">

<List type="java_member">
<Semantic type="text" type="java_member" id="48">

public void putString(String key, String value) { ... }
</Semantic>
<Semantic type="text" type="java_member" id="49">
public void getString(String key) { ... }
</Semantic>

</List>
</Field>

</Aggregate>

Figure 6: Example of XML Externalization Format in Stellation

193

package project.util;
import java.util.Map;
import java.util.HashMap;
/*+id=29"/
class StringMap implements Map extends HashMap { /*+id=48"/

public void putString(String key, String value) { ... }
/*+id=49"/

public void getString(String key) { ... }
}
/*+AGGINFO
<Aggregate type="java_class" id="23">

<Field name="name"type="String" value="project.util.StringMap"/>
<Field name="package" type="java~ackage_decl">package project.util
<Field name="imports" type="java_import_decl Set">

<member id="42">import java.util.Map</member>
<member id="43">import java.util.HashMap</member>

</Field>
<Field name="decl" type="java_class_decl" id="29"/>
<Field name="members" type="java_member List">

<memberref id="48"/>
<memberref id="49"/>

</Field>
</Aggregate>

</Field>

Figure 7: An example of a final externalized form in Stellation

port/export tooling for several common formats.
In order to support round-trip operations involving non-XML ex-

ternal formats, we expect that developers will use external formats
containing marker tags which identify the boundaries between ar-
eas corresponding to distinct XML elements. Figure 6 illustrates
our standard XML externalization format, and 7 illustrates a possi-
ble externalized Java format produced using an XML transformer.
This file is standard java syntax, with the addition of markers and
a file trailer to support round-trip operations. It is easy to write
a script that translates from this format to a simple XML format,
which is then transformed back into Stellation aggregate form us-
ing XSLT tools.

4.2 Using VSC and SCM for Concern Identi-
fication

The versioning history of fine-grained artifacts stored in a VSC
supporting SCM system can be used to identify concerns. The work
on this use of fine-grained SCM information is still preliminary,
but we believe it has great potential. The basic concept is that it
is possible to identify patterns from the development history of the
system, and to use those patterns to infer information about the
structure of the system and relationships between program artifacts.

Concern discovery can be performed using this mechanism in
several ways, including at least the analysis of change co-occurence
and pattern similarity recognition. Change association analysis is
based on the observation that related artifacts tend to change to-
gether. When a set of artifacts tend to consistently change together
through the development of the system, it is likely that they are
members of a common concern. Pattern similarity recognition is a
notion based on the work of Griswold et al on information trans-
parency[18], which is based on the property that code addressing a
particular concern will often exhibit a particular pattern: by recog-
nizing recurring patterns in code, a system can infer potential rela-
tionships between artifacts that exhibit those patterns. These kinds
of inference mechanisms can be implemented using data mining
and machine learning techniques. While these techniques could
have been applied using standard SCM systems, this would not
have been useful for aspect discovery, because it would only be
able to identify relationships between complete source files, rather

than between Collections of methods. The increased precision made
possible by fine-grained storage makes this techique significantly
more powerful in general, and in particular, makes it useful in the
context of aspect-identification. The remainder of this section fo-
cuses on the change association analysis that is used for aspect-
identification.

Change association between artifacts can be discovered by ap-
plying association rule mining[l] on repository versioning data.
Association rule mining is a technique for the so-called market
basket problem. Intuitively, market basket data corresponds to a
database of transactions in retail organizations. The goal of the
technique is to discover rules of the form "when a customer pur-
chases a set of items X in a transaction, they are likely to also
purchase a set of item Y in the same transaction." This can be
applied to program history by considering an atomic change unit (a
single semantic change spanning multiple artifacts) in the history
as a transaction containing the changed artifacts. In this setting,
association rules generated are of the form: "when a programmer
modifies a set of artifacts X in a change, they will likely also mod-
ify artifact Y in the same atomic change.". If the change association
is strong enough, then we can infer that there is a likelihood of a
concern relationship between X and Y.

To demonstration a concern relationship that could be inferred
through these techniques, we will discuss examples taken from
the current Stellation system source code. Stellation uses a rela-
tional database for storage. The system is based on an extension
architecture, where components are dynamically assembled into a
running system. Extensions can create and manipulate tables in
the database, and they can also manipulate both the intrinsic basic
database tables used by the system core, and by other extensions
which they depend on. The implementation of a particular exten-
sion touches on many different concerns: database storage, history,
logging, caching, retrieval, indexing and analysis.

When an extension is modified, there are certain change rela-
tionships that tend to hold. An example of such a relationship is
that when a method involved in the storage concern is modified,
the other methods will tend to change as well, because a change
to how data is stored in the database may affect the other methods
that access that database. Another example is that when code in-

194

volved in the indexing and analysis concern is modified, code that
uses the analysis results for retrieval will frequently change. Both
of these change patterns are indicative of concern relationships. We
believe that this technique is particularly useful because it can dis-
cover concern relationships that would be difficult to discover using
semantic analysis techniques. The two examples we cited above
are both relationships that involve modifications to code written as
literal strings passed to JDBC database access methods. Such rela-
tionships could not be derived from conventional program analysis
without specifically implementing a JDBC/SQL source code ana-
lyzer.

5. SUPPORTING COMPOSITIONAL AOSD
WITH SCM

As we discussed earlier, the use of VSC tools is not a replace-
ment for compositional aspect-oriented programming languages and
metalanguages, For the implementation of large, complicated soft-
ware systems, the greater power of compositional techniques is
necessary.

In such a situation, SCM-based visual separation of concern tools
can be combined with compositional systems. Such a combination
provides powerful capabilities, including reducing scatter-related
difficulties, maintaining history of the evolution of the system and
its concerns, and allowing programmers to store metadata reflecting
the connection between program artifacts and artifacts from other
stages of the software process.

We will describe two examples of the synergy between VSC and
compositional AOSD systems: persistent concern mapping, and
scatter reduction.

5.1 Concern Mapping
In the HyperJ system, concerns are mapped into a multidimen-

sional hyperspace. Each dimension of a hyperspace corresponds to
a particular set of concerns and criteria for separation. A key step in
building a system using the HyperJ module is the process of map-
ping concerns into their appropriate positions in the hyperspace,
and mapping program artifacts into the appropriate concerns. This
process is called concern mapping. This is done using a mechanism
for specifying the program artifacts that belong to a concern using
a query-like mechanism. Concern mapping is also a fundamen-
tal concept of the Cosmos model of Sutton and Rouvellou[19], but
Cosmos goes further, and extends the notion of concern mapping
to include artifacts from different phases of the development pro-
cess, and also to maintain relationships between different concerns
as they move through the process.

Concern mapping can be combined with a VSC SCM system
by representing the concern maps using aggregate structures, and
using the concern selection language as a fragment selection mech-
anism in the SCM system. Doing this provides a versioned form of
a concern map similar to the Cosmos model, but has several advan-
tages over the use of independent concern mapping tools:

• It is simple for programmers to experiment with different
specifications for concern mapping, and to easily view and
judge the results.

• The concern map is versioned by the SCM system, allowing
programmers to see how the set of concerns and the way that
the mapping of program artifacts onto concerns has evolved
over time.

• The concern map can store both program artifacts and arti-
facts from other stages of the software process. For exam-
ple, programmers can map both Java code and UML design

diagrams into a common concern map, and see the corre-
spondence between concerns in the design and the imple-
mentation. This makes the concern map of a Cosmos model
into something tangible that can be viewed, manipulated, and
used as a guide for performing development tasks.

5.2 Combating Scatter
As we discussed in section 2, using compositional AOSD can

introduce difficulties involving the introduction of unexpected se-
mantic elements, and scattering of control flow. To understand
a system implemented using compositional AOSD, the program-
mer must know about all of the aspects that make up the system,
and how they will be composed. This issue has been recognized
by other tool builders, and systems to assist aspect-oriented soft-
ware development have provided ways of seeing where code will
be composed. For example, the AspectJ development tools for
Eclipse[11] provide a visual indication in an outline view when a
method is the target of a piece of advice code.

By using a VSC tool, programmers can get a much better view of
the system, and how advice will be integrated. For example, when
viewing a system implemented using Aspect J, the system can auto-
matically generate views that co-locate methods and the selections
of advice that will be composed with those methods. From the con-
verse point of view, the system can use a join-point as a selection
expression, and generate a view illustrating what pieces of code
will be affected by a given aspect or a given fragment of advice.

Using such a facility, the impact of the scatter effect on the com-
prehensibility of the system can be dramatically reduced. The pro-
grammer can understand exactly what aspects will affect a given
piece of the system, and what parts of the system will be affected
by a particular aspect.

6. RELATED WORK AND OPEN QUESTIONS
Many of the basic techniques involved in the visual separation of

concerns is based on existing technologies.
The basic idea of fine-grained storage was explored by other sys-

tems including COOP/Orm[2] and ENVY[24], but neither of these
systems allowed dynamic custom view generation. Fine-grained
storage with some degree of dynamic views originated in environ-
ments like Smalltalk80[16], and the expanded functionality of dy-
namic views based on queries has been explored both the CMU
Gwydion project[28], and the Desert environment[27, 21].

The aggregate mechanism used by Stellation bears some rela-
tion to the type specification language of Adele[14, 3]. In addition
to the structuring and merge management features that we provide,
Adele's types have significantly richer semantics for managing ag-
gregate object behavior, history, and interactions.

The scatter problem has also been addi'essed by others. Murphy
et al[6, 26] have done a variety of work to help identify scattered
code related to a concern, and have built tools and proposed lan-
guage extensions to reduce the impact of scatter. Griswold[17, 18]
has proposed a programming technique called information trans-
parency and implemented supporting tools that use pattern recog-
nition in programs to identify code related to a scattered concern,
and gather that code together into a single view. This work is sim-
ilar to ours both in using views to reassemble scattered concerns,
and in using pattern-recognition to discover those concerns. We be-
lieve that the pattern recognition technique used by Griswold can
be enhanced by the use of the machine-learning techniques we pro-
posed in section ,4.2.

We believe that our visual separation of concerns model pro-
duces a significant step forward from the work of earlier systems,
both by providing richer functionality, and by combining existing

195

functionalities in new ways. However, there are several open ques-
tions that we plan to address, both in the fundamental VSC func-
tionality, and in the realm of new features that can be provided
using VSC.

1. What are the best ways of expressing desired selections of
artifacts? We currently use a query language, and will likely
support the HyperJ pattern matching language. But there are
a wide range of methods that programmers may want to use
to select the set or artifacts to present in a view. We plan to
explore alternatives, and provide a variety of mechanisms for
artifact selection.

2. What kinds of user interface support are needed to pro-
vide the maximum benefit of visual concern separation?
VSC can be a powerful aid in combating scatter, but for it to
yield its promise in this area, it must be possible to trivially
shift between different views containing the same artifact in
order to properly understand that artifact in context. Discov-
ering the correct UI paradigm for presenting this and other
capabilities of VSC is quite important.

3. Can VSC be used as a communication tool between mem-
bers of large development teams? One of the fundamental
goals of the Stellation project has been supporting collabo-
rative software development. We believe that VSC can be a
powerful tool for allowing one developer to communicate her
viewpoint on the code to another, or to present a viewpoint
that illustrates the cause of a bug.

4. What other features of a system can be discovered through
the machine-learning/data mining history approach de-
scribed in section 4.2? We believe that this approach is use-
ful for at least concern discovery, predictive impact analysis,
and predictive error analysis. But we also believe that as an
extremely new technique for taking advantage of the infor-
mation available in the history of a system, there are likely to
be other problems that can be approached through this tech-
nique.

7. CONCLUSIONS
In this paper, we presented a new model of concern separation

called the visual separation of concerns (VSC). VSC allows con-
cern separation by changing the basic storage model of the system,
storing programs as fine-grained artifacts rather than source files,
and allowing programmers to dynamically build views composed
from collections of fine-grained elements. The VSC model thus
allows concern separation without introducing new language con-
structs, languages, or modifications to the semantics of program-
ming languages.

We described some of the problems of existing approaches to
concern separation, including the scatter problem, and described
how VSC can avoid and even counteract scatter. We also described
how VSC systems can work synergistically with existing composi-
tional systems.

We also discussed some new research directions enabled by the
the VSC model, including improved concern mapping, and con-
cern discovery through development history analysis. Finally, we
discussed some open issues to be addressed by future work.

8. REFERENCES
[1] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami.

Mining association rules between sets of items in large

databases. In Peter Buneman and SusIfil Jajodia, editors,
Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pages 207-216,
Washington, D.C., 26-28 1993.

[2] B. Magnusson and U. Asklund. Fine grained version control
of configurations in COOP/Orm. In ICSE '96 SCM-6
Workshop, pages 31--48, 1996.

[3] N. Belkhatir, J. Estublier, and W. Melo. Adele 2: A support
to large software development process. In Proceedings of the
1st International Conference on the Software Process, 1991.

[4] L. Bergmans and M. Aksit. Composing crosscutting
concerns using composition filters. Communications of the
ACM, 44(10):51-57, October 2001.

[5] L. Bergmans, M. Aksit, and B. Tekinerdogan. Software
Architectures and Component Technology: the State of the
Art in Research and Practice, chapter Aspect Composition
Using Composition Filters, pages 357-382. Kluwer, 2001.

[6] Avi Bryant, Andrew Catton, Kris De Volder, and Gail C.
Murphy. Explicit programming. In Proceedings of the 1st
international conference on Aspect-oriented software
development, pages 10-18. ACM, 2002.

[7] M. Chu-Carroll and S. Sprenkle. Coven: Brewing better
collaboration through software configuration management.
In Proceedings of FSE 2000, 2000.

[8] M. C. Chu-Carroll. Supporting distributed collaboration
through multidimensional software configuration
management. In Proceedings of the lOth ICSE Workshop on
Software Configuration Management, 2001.

[9] Mark C. Chu-Carroll. Separation of concerns: an
organizational approach. In Proceedings of the OOPSLA
2000 Workshop on Advanced Separation of Concerns, 2000.

[10] Mark C. Chu-Carroll, James Wright, and David Shields.
Supporting aggregation in fine grained software
configuration management. In Proceedings of SIGSOFT FSE
I0, 2002. To appear.

[11] The Stellation project homepage. Webpage at
"http://www.eclipse.org/stellation".

[12] Eclipse platform technology overview. Technical report,
OTI, Inc., July 2001.

[13] James Clark (editor). XSL transformations (XSLT) version
1.0. W3c recommendation, W3C, November 1999.

[14] J. Estublier and R. Casallas. Configuration Management,
chapter The Adele Configuration Manager. Wiley and Sons,
Ltd., 1994.

[15] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and
M. Goedike. Viewpoints: a Framework for Integrating
Multiple Perspectives in System Development. International
Journal of Software Engineering and Knowledge
Engienering, 2(1):31-58, March 1992.

[16] A. Goldberg and D. Robson. Smalltalk 80: the Programming
Language. Addison Wesley Longman, Inc., 1989.

[17] W. G. Griswold, Y. Kato, and J. J. Yuan. AspectBrowser:
Tool Support for Managing Dispersed Aspects. Technical
Report CS99-0640, UCSD, Departmentof Computer Science
and Engineering, 1999.

[18] William G. Griswold. Coping with crosscutting software
changes using information transparency. In LNCS 2192:
Proceedings of Reflection 2001, pages 250-265. Springer
Verlag, 2001.

[19] S. Sutton Jr. and Isabelle Rouvellou. Modeling of software
concerns in cosmos. In Proceedings of the 1st international

196

conference on Aspect-oriented software development, pages
127-133. ACM, 2002.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In Proceedings of ECOOP, June 1997.

[21] Y. Lin and S. Reiss. Configuration management with logical
structures. In Proceedings oflCSE 18, pages 298-307, 1996.

[22] O. Lerhmann Madsen, K. Nygaard, and B. P. Miller.
Object-Oriented Programming in the Beta Programming
Languge. Addison-Wesley, 1993.

[23] H. Ossher and P. Tarr. Multi-dimensional Separation of
Concerns and the Hyperspace Approach. In Proceedings of
the Symposium on Software Architectures and Component
Technology. Kluwer, 2000.

[24] OTI. ENVY/Developer: The collaborative component
development environment for IBM visualage and
objectshare, inc. visualworks. Webpage: available online at:
"http://www.oti.com/briefs/ed/edbrief5i.htm".

[25] Dave Pawson. An introduction to XSL formatting objects.
Webpage at
"http://www.dpawson.co.uk/xsl/sect3/bk/index.htmr ', 2001.

[26] M. Robillard and G. Murphy. Concern graphs: Finding and
describing concerns using structural program dependenceis.
In Proceedings of the 24th International Conference on
Software Engineering, pages 406-416, 2002.

[27] S. Reiss. Simplifying data integration: the design of the
Desert software development environment. In Proceedings of
1CSE 18, pages 398-407, 1996.

[28] R. Stockton and N. Kramer. The Sheets hypercode editor.
Technical Report 0820, CMU Department of Computer
Science, 1997.

[29] R.E. Filman T. Elrad and A. Bader (editors). Special section
on Aspect Oriented Programming. Communications of the
ACM, 44(10):28-97, October 2001.

[30] P. Tarr, W. Harrison, H. Ossher, A. Finkelstein, B. Nuseibeh,
and D. Perry, editors. Proceedings of the ICSE2000
Workshop on Multi-Dimensional Separation of Concerns in
Software Engineering, 2000.

[31] P. Tarr, H. Ossher, W. Harrison, and Jr. S. Sutton. N degrees
of separation: Multi-dimensional separation of concerns. In
Proceedings of the 21st International Conference on
Software Engineering, pages 107-119, 1999.

197

