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ABSTRACT 
Aspect-oriented software development (AOSD) has primarily fo- 
cused on linguistic and meta-linguistic mechanisms for separating 
concerns in program source. However, the kinds of concern separa- 
tion and complexity management that AOSD endeavors to achieve 
are not the exclusive province of programming language design. 

In this paper, we propose a new model of concern separation 
called visual separation of concerns (VSC), which is based on a 
new model of program storage. By altering the mechanisms used 
to store and manipulate program artifacts, much of the capability 
of concern separation can be captured without performing any lin- 
guistic transformations. We also describe our implementation of  
VSC, which is based on Stellation, an experimental software con- 
figuration management system. The VSC approach combined with 
software configuration management can have advantages over con- 
ventional approaches by avoiding program transformations, by pro- 
viding persistent storage of  features such as concern maps, and by 
enabling new techniques for concern identification and manipula- 
tion. 

1. INTRODUCTION 
Separation of  concerns is one of the central tenets of  proper 

software design and engineering. As software complexity has in- 
creased, tool and language designers have developed new tech- 
niques for managing that complexity through the separation and 
management of  distinct concerns. 

One of  the most recent efforts in this direction is aspect-oriented 
software development (AOSD)[29], which is based on the recogni- 
tion that concerns are often difficult to separate because they follow 
different fundamental semantic structures. Since most current pro- 
gramming languages require semantic structures to be reflected in 
the basic syntactic structure of a system's code, and dictate that 
there is exactly one dominant semantic structure to the system, this 
means that some concerns must be implemented in a way that cuts 
across the basic structure of the system. Tart et al have termed this 
problem the Tyranny oft  he Dominant Decomposition[31 ]. 
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AOSD addresses this problem by allowing cross-cutting con- 
cerns to be managed, either by allowing a cross-cutting concern 
to be sliced out of a program, or by allowing concerns to be imple- 
mented separately and then integrated together. Most techniques 
in both categories are based on some form of  semantic or linguis- 
tic transformation of  the program, either slicing aspects out of  the 
program into independent semantic units, or through the use of lan- 
guage extensions or meta-languages to describe how semantically 
independent implementations of  different concerns should be com- 
posed into a single integrated semantic unit. 

We propose a different approach for aspect-oriented separation 
of concerns, called visual separation of concerns (VSC). VSC presents 
separate views of  cross-cutting aspects, allowing programmers to 
read and edit aspects in isolation, while leaving the semantic struc- 
ture of  the system untouched. The visual technique is based on a 
new model of  program storage that separates notions of  storage, 
language semantics, and program organization. By doing this, it is 
possible to allow programmers to view their system through mul- 
tiple, overlapping, editable organizations of the system, each of 
which presents concerns separated by a different criteria; each or- 
ganization represents a decomposition of  the system according a 
different dimension of concern. 

2. THE PROBLEMS WITH COMPOSITIONAL 
AOSD 

Typically, aspect oriented systems separate concerns linguisti- 
cally, by either extending programming languages, or by provid- 
ing a compositional metalanguage. In the former approach, typ- 
ified by AspectJ[20], constructs are added to the language which 
programmers use to implement cross-cutting aspects, which are 
then composed into the primary semantic structure of  the system 
at compile time. In the latter approach, typified by HyperJ[23] and 
Composition Filters[4, 5] concerns are implemented separately as 
complete components using standard programming language se- 
mantics, and those separate concern implementations are then com- 
posed together at compile time through the use of  a meta-language 
describing how the different concerns should be integrated. 

We believe that these compositional approaches have two weak- 
nesses: invisible semantic transformation, and scatter. We will dis- 
cuss each of  these in greater detail. 

It should be noted that we do not believe that the visual technique 
is a replacement for compositional AOSD systems; compositional 
techniques provide powerful capabilities that can yield significant 
benefits in dealing with the complexity of  large software systems. 
However, we believe that the benefits of  the visual technique are 
synergistic with those of  compositional AOSD tools. We believe 
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that in many cases, the benefits of the visual technique are large 
enough that full compositional techniques are not needed; and fur- 
ther that when this is the case, avoiding the program-transforming 
properties of composition is a significant benefit. 

2.1 Invisible Semantic Transformation 
By invisible semantic transformation, we mean that composi- 

tional approaches generate executable code in which code may have 
been inserted by aspect composition which has significant effects, 
but where the potential for these effects are not signaled in the pre- 
composition source code. 

For example, in AspectJ, programmers implement aspects by 
specifying join points in standard Java code, and providing a body 
of code to be inserted at program locations that match that join 
point specification. The target of the composition is a standard Java 
source file, with no indication of  the possibility of other code being 
inserted. A programmer unfamiliar with the aspect composition 
scheme in use could easily be confused, because composed code 
can alter the visible state of the system in ways that appear impos- 
sible in the original code. There is no indication in the basic Java 
code that the code in the class source file is not semantically com- 
plete. The programmer needs to understand the full aspect system 
in order to understand their code, and there is no direct way of  iden- 
tifying all of the aspects being composed except by looking at the 
build process. 

Thus, in compositional systems, the final executable structure of 
the program does not precisely match the structure expected from 
reading the source code of any standard semantic unit of the pro- 
gram. While the benefits of AOSD are significant, the problem of 
invisible semantic transformation, particularly during the ongoing 
process of software maintenance, should not be discounted. 

2.2 Scatter 
Scatter, while closely related to invisible semantic transforma- 

tion, is in some sense a deeper issue. It is a direct manifestation 
of the application of abstraction in programming language design. 
The same linguistic tools that provide the capability to separate 
concerns also produce a non-trivial negative effect on the readabil- 
ity and traceability of code. Scatter is our term for the effects of  
abstraction and indirection in programming languages causing the 
flow of control through a program to become increasingly indirect. 
We call it scatter because the common manifestation of  this prob- 
lem is that the flow of control for a particular operation is scattered 
through many different storage units, making it difficult to view or 
understand as a consistent whole. 

In early programming languages, programs were quite small and 
monolithic, and control flow was straightforward and easy to fol- 
low. Over time, monolithic programs became too complex, and 
structured programming introduced named subroutines to help man- 
age complexity. Understanding specific control flow became a bit 
harder, but there were significant gains in both expressiveness and 
in the manageable complexity of  the system. In our terms, this 
introduced the first layer of  scatter: instead of  a straightforward 
control flow, control now jumped in and out of  named units, and 
understanding the execution stack became crucial to understanding 
program execution. 

Object-orientation introduced a significant new layer of  scatter: 
with objects, a name now referred to a family of  type-related sub- 
routines, with a particular subroutine selected dynamically at exe- 
cution time. To understand flow, the programmer needed to under- 
stand the type structure of the system, and the ways in which names 
would be bound during execution. This means that to understand an 
operation, a programmer needs to follow its code through multiple 

I:t~ort. i ] av~ ~.ut J.~ ;Carp ~1 

Figure 1: Example of division of a Java class into fragments 

class definitions, which may be scattered through multiple source 
files. In a complex program, understanding control flow could in- 
volve viewing dozens of source files. 

Aspect-orientation can introduce yet another layer of scatter. A 
particular operation may still involve methods defined in many dif- 
ferent classes, but now, each of  those methods may be assembled 
from a collection of aspect sources. To understand the system, the 
programmer must understand all of  the classes in a/l of  the separate 
concerns, and how they will all be composed together. 

Each step in this process of  programming language evolution in- 
troduced significant, expressive tools that allowed programmers to 
work with vastly more complex systems. But at the same time, 
each step introduced more scatter, and this scatter produced signif- 
icant new issues of its own. The scatter effect must be considered 
when designing and implementing a system. When introducing a 
new aspect or a separating out a new concern, programmers need to 
consider whether the benefit of  that separation outweighs the added 
scatter. 

A major advantage of  the visual concern separation approach is 
that it counteracts scatter. With a VSC tool, a programmer can view 
code with concerns separated when it is valuable to separate it, but 
they can also view the code through a non-separated non-scattered 
view. 

3. VISUAL SEPARATION OF CONCERNS: 
A NON-COMPOSITIONAL APPROACH 
TO AOSD 

We propose a different approach, which we call visual separa- 
tion of  concerns (VSC). Instead of  providing linguistic methods 
of separating concerns through modification of the programming 
model, VSC is based on separating concerns by modifying the stor- 
age model. 

In conventional tools, programmers store code using source files. 
The location of  an element of code within a source file can express 
either semantic properties (class membership, name scope), or or- 
ganizational properties (related methods will often be closely co- 
located). A file-based storage system forces programmers to place 
program elements in exactly one position, strictly limiting storage 
structure as an expressive mechanism. We believe that this is a 
problem very similar to the tyranny of the dominant decomposi- 
tion, and have thus termed it the tyranny of source files[9]. 

In the VSC approach, storage is not in terms of  files, but in terms 
of  smaller fine-grained elements called fragments. Fragments con- 
sist of  atomic units of  code from an underlying programming lan- 
guage, with a linkage to their semantic context. Unlike the sim- 
ilarly named fragment construct of programming languages like 
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Figure 2: Screenshot of a VSF Editor with an Aggregate Outline 

Beta[22], code fragments are not a semantic construct: a fragment 
is specific atomic segment of  code in a particular semantic con- 
text determined by its position in a canonical view of  the program. 
The size of a fragment is dependent on the underlying language: 
it consists of the smallest identity-preserving element in the lan- 
guage structure. For example, in Java, fragments consist of  meth- 
ods, fields, etc. (The division of  a java source file into fragments 
is illustrated in figure 1.) Programmers then view and manipulate 
code through source-file like code views, called virtual source files, 
which are generated from dynamically selected collections of frag- 
ments. Programmers use the dynamic selection mechanism to pro- 
duce code views that reflect decompositions of  the system accord- 
ing to different dimensions of concern. These code views have no 
semantic effect on the program: programmers view collections of 
fragments through VSFs, but the fragments are still compiled and 
executed in their original semantic context. 

For example, figure 2 presents a screenshot of  the Eclipse IDE 
extended to edit VSFs. The VSF Editor (left) presents views a set 
of  source fragments selected by some criteria (in this case, methods 
using the interface lMarker). Fragments which meet the criteria are 
included in the VSF view, separated by a narrow horizontal separa- 
tor; a thicker separator is used to denote type (source file) bound- 
aries. The Content Outline on the right lists all fragments in the 

current VSE The underlying source code semantics are unaltered. 
VSC is a powerful technique enabling programmers to view con- 

cerns in isolation, without transforming the structure or semantics 
of  the program. Although the VSC technique does not have the 
full power of  compositional approaches, it allows programmers to 
gain much of  the benefit of concern separation without confronting 
the additional complexity of  compositional systems, or the scatter 
related problems that they cause. 

The VSC model has one very significant advantage over the com- 
positional techniques: it enables the creation of concern views, 
similar to the viewpoints of Finkelstein[15], that integrate prod- 
ucts from different phases of  the development process. For exam- 
ple, a concern view can present the documentation of  a concern, 
the analysis requirements that led to the concern, design diagrams 
describing the implementation of the concern, and the code that 
implements that concern together in one consistent view or set of  
views. 

3.1 Separating Concerns without Composition: 
an Example 

For example, consider figure 3, which represents a illustratory 
subset of  code implementing a distributed software development 
environment. In this system, the UI is dynamically assembled from 
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Figure 3: An illustration of scatter in an object-oriented appli- 
cation 

contributions provided by dynamically loaded components. The 
horizontal boxes correspond to Java source files and the package 
directories containing those source files in a conventional file-based 
storage system. The irregular shaded boxes correspond to code 
involved in the menu generation process. In the standard source- 
file view (in the complete system), this menu generation process is 
scattered through 30 different source files. 

The shaded code could be considered a menu generation concern 
or a aspect. But in practice, this is a very abstract, highly scattered 
concern which involves: (a) pieces of the basic communication sys- 
tem including message generation and dynamic subscription; (b) 
the production of XML documents describing menus (c) the reg- 
istration of event types and listeners for the UI; and more! In an 
Aspect J-like model of AOSD, there is no useful way to capture an 
aspect or concern like this, because this aspect itself involves so 
many other aspects. Any encapsulation of this using Aspect-J as- 
pects will create a huge amount of  scatter, almost certainly adding 
enough scatter-based complexity to the system to outweigh the ben- 
efits of encapsulation. 

In a system like HyperJ, menu generation in this system corre- 
sponds to a hyper-slice or hyper-module: a collection of  code that 
when viewed through the lens of  menu generation is presented as 
a complete concern. This is a better solution than that afforded by 
AspectJ, because it does allow this abstract concern to be encap- 
sulated and represented; however, there are numerous interactions 
between this code and other code in the surrounding context of  each 
of  the highlighted chunks. To understand the full impact and inter- 
action of this code in surrounding context, a developer must be able 
to understand the code both in isolation as an encapsulated concern, 
and in context as a part of the complete components where the var- 
ious fragments of the menu generation will execute. In the HyperJ 
model, this is possible: hyperslices can overlap, and the same code 
can be viewed in the context of different hyperslices. However, 
because of  the semantic transformation of  the code in the process 
of  slicing, the programmer will need to carefully reconcile the two 
different transformed code selections. 

In the visual separation model, the system can generate an encap- 
sulated view that presents the complete menu generation concern as 
a single virtual source tile view. At the same time, the programmer 
could see the standard Java source organization in another view. 

Changes made in either view will immediately appear in both. The 
programmer can freely switch between views, without having to 
deal with any reconciliation: the code seen in both views is identi- 
cal, untransformed. 

The VSC model can thus reduce the scatter issue: languages may 
scatter code, but VSC tools can gather code together when nec- 
essary, while still allowing the programmer to reap the linguistic 
benefits of concern separation. Further, programmers can avoid in- 
troducing scatter in places where visual separation is sufficient, and 
linguistic separation is not necessary. Finally, when the use of  ad- 
vanced tools like HyperJ or AspectJ is necessary, visual separation 
can help reduce the scatter complexity introduced by the features 
of  these languages: programmers can select views that co-locate all 
of the code that will be composed into a single execution unit. 

3.2 Requirements for Visual Separation of Con- 
cerns 

For a system to support visual separation of concerns, there are 
a small number of  requirements: 

1. 

2. 

3. 

Fine-grained fragment storage. A VSC system must store 
program artifacts as fine-grained units. The core VSC func- 
tionality is based on dynamically re-arranging the code into 
different views, and changes made to a fragment in any one 
view should be immediately reflected in all other views con- 
taining that fragment. This means that the basic storage model 
must be built around fine-grained storage and manipulation 
of program fragments. 

Aggregation. A VSC system must provide some mechanism 
for combining collections of  fine-grained program a_tifacts 
into larger source file-like views. 

Dynamic Fragment Selection. A VSC system must provide 
some mechanism for selecting the set of  fragments to be 
presented in a particular view. Possible realizations of this 
mechanism include (but are not limited to) a query language, 
a pattern-matching facility, or a browser tool for selecting 
related artifacts. 

4. 

5. 

Fragment-aware editing tools. The VSC model is fundamen- 
tally based on a radically different storage model. The sys- 
tem needs some kind of  program editing tool that allows pro- 
grammers to work with the virtual source files generated by 
the system. 

Internalization/Externalization facilities. Most common tools 
used by developers, including compilers, debuggers, and pro- 
fliers do not support the sort of  fine-grained storage systems 
provided by a VSC system. Thus, the system must provide 
some mechanism for externalizing sets of  fine-grained arti- 
facts as standard source files for manipulation by conven- 
tional tools. 

4. VISUAL SEPARATION OF CONCERNS 
AND SOFTWARE CONFIGURATION MAN- 
AGEMENT 

The primary focus of  our work has been on advanced software 
configuration management (SCM) functionality in the Stellation 
system. Our visual separation of  concerns model is derived from 
our work on multidimensional software configuration management, 
as described in [7, 8, 30, 10, 9]. We believe that a software config- 
uration management system tightly integrated with a programming 
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SlotType = AtomicType [ CollectionType 
AtomicType = PrimitiveType [ SemanticType ] UnionType 
PrimitiveType = Integer [ String [ Text [ Binary 
SemanticType = language specific atomic type 
java_method_decl ) 
UnionType = AtomicType "or" AtomicType ... 
CollectionType = Set of AtomicType ] List of AtomicType 

Figure 4: Aggregate Slot Types Summary 

(e.g., 

environment is the appropriate platform for building visual separa- 
tion of concern tools. SCM systems are among the most ubiqui- 
tous tools used by software developers, and are the primary mecha- 
nism that programming teams use for storing programs and sharing 
work. Thus, for most developers, integrating VSC into an SCM 
system provides the most natural interface to this functionality. 

Beyond the basic VSC functionality we will describe, integrat- 
ing it with SCM provides several unique facilities. These are made 
possible by taking advantage of the versioning capabilities of the 
SCM system to provide versioning of both the fine-grained units, 
and the larger aggregates assembled from those fine-grained units. 
In particular, it enables a flexible mechanism for managing the his- 
tory of concern mapping within a system; for using data mining and 
machine learning mechanisms for concern identification; and even 
for providing stronger integration of compositional AOSD systems 
with other tools. 

4.1 Implementing VSC though SCM in Stel- 
lation 

We are implementing our VSC model in the Stellation SCM sys- 
tem. Stellation is an experimental SCM system being developed as 
a research technology subproject of the Eclipse development envi- 
roament[ 12]. 

Stellation is currently being implemented with VSC support for 
Java. Our implementation of the fine-grained versioning require- 
ment is straightforward, but our mechanisms for aggregation,fragment 
retrieval, and externalization require elaboration. 

4.1.1 Aggregation in Stellation 
A detailed description of the Stellation aggregation mechanism 

can be found in [10]. 
Aggregation is our mechanism for combining groups of frag- 

ments into larger structures. This aggregation facility is required 
for building dynamic views. But an aggregation facility is useful 
for far more than just simple source views: in fact, aggregation is 
the key that enables many of the particularly powerful capabilities 
of Stellation. Aggregation is a general purpose metadata mech- 
anism that allows Stellation to manage relationships and concern 
maps, to provide a mechanism for other tools to integrate thier data 
into a Stellation repository, and to provide data integration facilites 
for linking data from multiple sources or multiple phases of the 
development process. 

This aggregate system allows programmers to define types of ag- 
gregates to represent different repository data and metadata struc- 
tures. The type system allows programmers and tools to differenti- 
ate between aggregates created for different purposes, and to allow 
aggregates to have enough structure to represent complex data and 
relationships. An aggregate type looks like a type definition in a 
programming language: it consists of a set of named slots, each of 
which declares a type and a merge operator. Slot types are summa- 
rized in figure 4. A set of sample aggregate type declarations are 
illustrated in figure 5a. 

Programmers can dynamically define and evolve aggregate type 

definitions. Any aggregate type whose slots contain artifacts that 
can be viewed using the Stellation UI can be presented as a view. 
For example, a developer could define an aggregate type to rep- 
resent the relationship between a set of of requirements, and the 
fragments of code that implement those requirements. Once rep- 
resented as an aggregate, that relationship can be versioned, main- 
taining the correct associations throughout the evolution of the sys- 
tem; it can also be presented as an editable view within the pro- 
gramming environment. 

4.1.2 Artifact Selection in Stellation 
To take advantage of the aggregate mechanism, both users and 

tools require some mechanism to dynamically create and populate 
aggregates. In order to do this, Stellation provides a query lan- 
guage, and allows programmers to populate the slots of an aggre- 
gate using queries. The query language is extension based, allow- 
ing programmers to provide components for adding new predicates 
and new conjugates to the query language. 

In addition, since the query language itself is implemented as 
an extension component, developers can add new forms of queries 
beyond the "built-in" query language, including pattern matchers, 
query-by-example, or even a full logic programming language. 

An example of query-based aggregate generation can be seen in 
figure 5b. This example illustrates how our aggregation mechanism 
creates source-file-like aggregate views that present a cross-cutting 
concern in a single source file, in this case producing the virtual 
source file corresponding to the scattered concern in figure 3. The 
UI for this system assembled menus by having a method named 
"populateMenus", which sent a message asking for contributions 
to the menu from different components, and then waited for contri- 
butions sent as responses. Following the control flow of the process 
of generating menus for a real system was extremely complicated: 
it involved methods from approximately 30 classes. In a conven- 
tional storage system, that required the programmer to trace code 
through 30 different files! In Stellation, the programmer can select 
a functional view that presents all code involved in this process in 
one place. 

The work on Stellation has been largely independent of work 
in aspect-oriented programming languages - but it is noteworthy 
that the query language, which is being developed based on spe- 
cific functionality requirements from users, naturally acquired con- 
structs similar to AspectJ's join point specifiers, as seen in this ex- 
ample. More examples of our query language, and a description of 
how the query language can be implemented efficiently are found 
in [10]. 

4.1.3 Artifact Externalization in Stellation 
Externalization is the capability to take an aggregate artifact within 

a Stellation repository and translate it into a form which can be 
used by external tools. There are two key pieces to this process: 
export (take an aggregate within the repository and translate it into 
its external form), and import (take an externalized aggregate, and 
translate that back into an internal form, generating a new version 
if the aggregate was modified). 

Our approach to externalization is based on the use of standard 
XML tools. The XML community has done extensive work on 
document transformation using XSLT[13] and XML formatting ob- 
jects[25]. We export all aggregates into an XML format defined by 
an aggregate schema, and then allow developers to use an XML 
tool to translate the resulting document into a desired format. Im- 
port is handled similarly: developers use external tools to Iranslate 
their external form back into the Stellation XML schema, and the 
result is reintegrated into the repository. We plan to provide im- 
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aggregate java_class 
name: [conflict] String 
package: [conflict] java_package_decl 
imports: [union] java.import_decl 
decl: [conflict] j ava_class_decl 
members: [linear] java.member List 

) 

aggregate java_viewpoint { 
name: [conflict] String 
description: [linear] Text 
members: [dynamic] java_member List 

) 

aggregate bug_report { 
title : [conflict] String 
severity : [largest] Integer 
description : [conflict] Text 
subject_code : [dynamic] java.member_decl Set 
test_data : [union] test_case Set 

} 

aggregate specifies_relationship { 
specification : [union]Z_fragment Set 
implementation : [union]java_member_decl Set 

} 

(a) Aggregate Type Examples 

menu_mgmt = new java_viewpoint { 
name = "menu management" 
description = "Menu management component of functional decomposition" 
members = all m :java_method ] 

m calls subscribeCmenu.contfibution.request", *, *) 
OR m.name = contributeMenu OR m.name = UIDriver.populateMenus 
OR m calls sendMessageCmenu.contribution", *, *) 

) 

(b) Aggregate population examples 

Figure 5: Aggregate X)~pe Declaration and Population Examples 

<Aggregate type="java_class" id="23"> 
<Field name="name"><String>project.util.StringMap</String> </Field> 
<Field name="package"> 

<Semantic type="Text" label="java~ackage~ecl" id="27"> 
package project.util; 
</Semantic></Field> 

<Field name="imports"><Set type="java_import_decl"> 
<Semantic type="text" label="java~mport_decl" id="42"> 
import java.util.Map; 
</Semantic> 
<Semantic type="text" label="java~mport_decl" id="43"> 
import java.util.HashMap; 
</Semantic> 

</Set></Field> 
<Field name="decl"> 

<Semantic type="Text" label="java_class_decl" id="29"> 
class StringMap implements Map extends HashMap 
</Semantic> 

</Field> 
<Field name="members"> 

<List type="java_member"> 
<Semantic type="text" type="java_member" id="48"> 

public void putString(String key, String value) { ... } 
</Semantic> 
<Semantic type="text" type="java_member" id="49"> 
public void getString(String key) { ... } 
</Semantic> 

</List> 
</Field> 

</Aggregate> 

Figure 6: Example of XML Externalization Format in Stellation 
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package project.util; 
import java.util.Map; 
import java.util.HashMap; 
/*+id=29"/ 
class StringMap implements Map extends HashMap { /*+id=48"/ 

public void putString(String key, String value) { ... } 
/*+id=49"/ 

public void getString(String key) { ... } 
} 
/*+AGGINFO 
<Aggregate type="java_class" id="23"> 

<Field name="name"type="String" value="project.util.StringMap"/> 
<Field name="package" type="java~ackage_decl">package project.util 
<Field name="imports" type="java_import_decl Set"> 

<member id="42">import java.util.Map</member> 
<member id="43">import java.util.HashMap</member> 

</Field> 
<Field name="decl" type="java_class_decl" id="29"/> 
<Field name="members" type="java_member List"> 

<memberref id="48"/> 
<memberref id="49"/> 

</Field> 
</Aggregate> 

</Field> 

Figure 7: An example of a final externalized form in Stellation 

port/export tooling for several common formats. 
In order to support round-trip operations involving non-XML ex- 

ternal formats, we expect that developers will use external formats 
containing marker tags which identify the boundaries between ar- 
eas corresponding to distinct XML elements. Figure 6 illustrates 
our standard XML externalization format, and 7 illustrates a possi- 
ble externalized Java format produced using an XML transformer. 
This file is standard java syntax, with the addition of markers and 
a file trailer to support round-trip operations. It is easy to write 
a script that translates from this format to a simple XML format, 
which is then transformed back into Stellation aggregate form us- 
ing XSLT tools. 

4.2 Using VSC and SCM for Concern Identi- 
fication 

The versioning history of fine-grained artifacts stored in a VSC 
supporting SCM system can be used to identify concerns. The work 
on this use of fine-grained SCM information is still preliminary, 
but we believe it has great potential. The basic concept is that it 
is possible to identify patterns from the development history of  the 
system, and to use those patterns to infer information about the 
structure of  the system and relationships between program artifacts. 

Concern discovery can be performed using this mechanism in 
several ways, including at least the analysis of  change co-occurence 
and pattern similarity recognition. Change association analysis is 
based on the observation that related artifacts tend to change to- 
gether. When a set of artifacts tend to consistently change together 
through the development of  the system, it is likely that they are 
members of  a common concern. Pattern similarity recognition is a 
notion based on the work of Griswold et al on information trans- 
parency[ 18], which is based on the property that code addressing a 
particular concern will often exhibit a particular pattern: by recog- 
nizing recurring patterns in code, a system can infer potential rela- 
tionships between artifacts that exhibit those patterns. These kinds 
of  inference mechanisms can be implemented using data mining 
and machine learning techniques. While these techniques could 
have been applied using standard SCM systems, this would not 
have been useful for aspect discovery, because it would only be 
able to identify relationships between complete source files, rather 

than between Collections of  methods. The increased precision made 
possible by fine-grained storage makes this techique significantly 
more powerful in general, and in particular, makes it useful in the 
context of  aspect-identification. The remainder of this section fo- 
cuses on the change association analysis that is used for aspect- 
identification. 

Change association between artifacts can be discovered by ap- 
plying association rule mining[l] on repository versioning data. 
Association rule mining is a technique for the so-called market 
basket problem. Intuitively, market basket data corresponds to a 
database of  transactions in retail organizations. The goal of  the 
technique is to discover rules of  the form "when a customer pur- 
chases a set of items X in a transaction, they are likely to also 
purchase a set of  item Y in the same transaction." This can be 
applied to program history by considering an atomic change unit (a 
single semantic change spanning multiple artifacts) in the history 
as a transaction containing the changed artifacts. In this setting, 
association rules generated are of  the form: "when a programmer 
modifies a set of artifacts X in a change, they will likely also mod- 
ify artifact Y in the same atomic change.". If the change association 
is strong enough, then we can infer that there is a likelihood of  a 
concern relationship between X and Y. 

To demonstration a concern relationship that could be inferred 
through these techniques, we will discuss examples taken from 
the current Stellation system source code. Stellation uses a rela- 
tional database for storage. The system is based on an extension 
architecture, where components are dynamically assembled into a 
running system. Extensions can create and manipulate tables in 
the database, and they can also manipulate both the intrinsic basic 
database tables used by the system core, and by other extensions 
which they depend on. The implementation of  a particular exten- 
sion touches on many different concerns: database storage, history, 
logging, caching, retrieval, indexing and analysis. 

When an extension is modified, there are certain change rela- 
tionships that tend to hold. An example of  such a relationship is 
that when a method involved in the storage concern is modified, 
the other methods will tend to change as well, because a change 
to how data is stored in the database may affect the other methods 
that access that database. Another example is that when code in- 
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volved in the indexing and analysis concern is modified, code that 
uses the analysis results for retrieval will frequently change. Both 
of these change patterns are indicative of concern relationships. We 
believe that this technique is particularly useful because it can dis- 
cover concern relationships that would be difficult to discover using 
semantic analysis techniques. The two examples we cited above 
are both relationships that involve modifications to code written as 
literal strings passed to JDBC database access methods. Such rela- 
tionships could not be derived from conventional program analysis 
without specifically implementing a JDBC/SQL source code ana- 
lyzer. 

5. SUPPORTING COMPOSITIONAL AOSD 
WITH SCM 

As we discussed earlier, the use of VSC tools is not a replace- 
ment for compositional aspect-oriented programming languages and 
metalanguages, For the implementation of large, complicated soft- 
ware systems, the greater power of compositional techniques is 
necessary. 

In such a situation, SCM-based visual separation of concern tools 
can be combined with compositional systems. Such a combination 
provides powerful capabilities, including reducing scatter-related 
difficulties, maintaining history of the evolution of the system and 
its concerns, and allowing programmers to store metadata reflecting 
the connection between program artifacts and artifacts from other 
stages of the software process. 

We will describe two examples of the synergy between VSC and 
compositional AOSD systems: persistent concern mapping, and 
scatter reduction. 

5.1 Concern Mapping 
In the HyperJ system, concerns are mapped into a multidimen- 

sional hyperspace. Each dimension of a hyperspace corresponds to 
a particular set of concerns and criteria for separation. A key step in 
building a system using the HyperJ module is the process of map- 
ping concerns into their appropriate positions in the hyperspace, 
and mapping program artifacts into the appropriate concerns. This 
process is called concern mapping. This is done using a mechanism 
for specifying the program artifacts that belong to a concern using 
a query-like mechanism. Concern mapping is also a fundamen- 
tal concept of the Cosmos model of Sutton and Rouvellou[ 19], but 
Cosmos goes further, and extends the notion of concern mapping 
to include artifacts from different phases of the development pro- 
cess, and also to maintain relationships between different concerns 
as they move through the process. 

Concern mapping can be combined with a VSC SCM system 
by representing the concern maps using aggregate structures, and 
using the concern selection language as a fragment selection mech- 
anism in the SCM system. Doing this provides a versioned form of 
a concern map similar to the Cosmos model, but has several advan- 
tages over the use of independent concern mapping tools: 

• It is simple for programmers to experiment with different 
specifications for concern mapping, and to easily view and 
judge the results. 

• The concern map is versioned by the SCM system, allowing 
programmers to see how the set of concerns and the way that 
the mapping of program artifacts onto concerns has evolved 
over time. 

• The concern map can store both program artifacts and arti- 
facts from other stages of the software process. For exam- 
ple, programmers can map both Java code and UML design 

diagrams into a common concern map, and see the corre- 
spondence between concerns in the design and the imple- 
mentation. This makes the concern map of a Cosmos model 
into something tangible that can be viewed, manipulated, and 
used as a guide for performing development tasks. 

5.2 Combating Scatter 
As we discussed in section 2, using compositional AOSD can 

introduce difficulties involving the introduction of unexpected se- 
mantic elements, and scattering of control flow. To understand 
a system implemented using compositional AOSD, the program- 
mer must know about all of the aspects that make up the system, 
and how they will be composed. This issue has been recognized 
by other tool builders, and systems to assist aspect-oriented soft- 
ware development have provided ways of seeing where code will 
be composed. For example, the AspectJ development tools for 
Eclipse[11] provide a visual indication in an outline view when a 
method is the target of a piece of advice code. 

By using a VSC tool, programmers can get a much better view of 
the system, and how advice will be integrated. For example, when 
viewing a system implemented using Aspect J, the system can auto- 
matically generate views that co-locate methods and the selections 
of advice that will be composed with those methods. From the con- 
verse point of view, the system can use a join-point as a selection 
expression, and generate a view illustrating what pieces of code 
will be affected by a given aspect or a given fragment of advice. 

Using such a facility, the impact of the scatter effect on the com- 
prehensibility of the system can be dramatically reduced. The pro- 
grammer can understand exactly what aspects will affect a given 
piece of the system, and what parts of the system will be affected 
by a particular aspect. 

6. RELATED WORK AND OPEN QUESTIONS 
Many of the basic techniques involved in the visual separation of 

concerns is based on existing technologies. 
The basic idea of fine-grained storage was explored by other sys- 

tems including COOP/Orm[2] and ENVY[24], but neither of these 
systems allowed dynamic custom view generation. Fine-grained 
storage with some degree of dynamic views originated in environ- 
ments like Smalltalk80[16], and the expanded functionality of dy- 
namic views based on queries has been explored both the CMU 
Gwydion project[28], and the Desert environment[27, 21]. 

The aggregate mechanism used by Stellation bears some rela- 
tion to the type specification language of Adele[14, 3]. In addition 
to the structuring and merge management features that we provide, 
Adele's types have significantly richer semantics for managing ag- 
gregate object behavior, history, and interactions. 

The scatter problem has also been addi'essed by others. Murphy 
et al[6, 26] have done a variety of work to help identify scattered 
code related to a concern, and have built tools and proposed lan- 
guage extensions to reduce the impact of scatter. Griswold[17, 18] 
has proposed a programming technique called information trans- 
parency and implemented supporting tools that use pattern recog- 
nition in programs to identify code related to a scattered concern, 
and gather that code together into a single view. This work is sim- 
ilar to ours both in using views to reassemble scattered concerns, 
and in using pattern-recognition to discover those concerns. We be- 
lieve that the pattern recognition technique used by Griswold can 
be enhanced by the use of the machine-learning techniques we pro- 
posed in section ,4.2. 

We believe that our visual separation of concerns model pro- 
duces a significant step forward from the work of earlier systems, 
both by providing richer functionality, and by combining existing 
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functionalities in new ways. However, there are several open ques- 
tions that we plan to address, both in the fundamental VSC func- 
tionality, and in the realm of new features that can be provided 
using VSC. 

1. What  are the best ways of expressing desired selections of 
artifacts? We currently use a query language, and will likely 
support the HyperJ pattern matching language. But there are 
a wide range of methods that programmers may want to use 
to select the set or artifacts to present in a view. We plan to 
explore alternatives, and provide a variety of mechanisms for 
artifact selection. 

2. What  kinds of user interface support are needed to pro- 
vide the maximum benefit of visual concern separation? 
VSC can be a powerful aid in combating scatter, but for it to 
yield its promise in this area, it must be possible to trivially 
shift between different views containing the same artifact in 
order to properly understand that artifact in context. Discov- 
ering the correct UI paradigm for presenting this and other 
capabilities of VSC is quite important. 

3. Can VSC be used as a communication tool between mem- 
bers of large development teams? One of the fundamental 
goals of the Stellation project has been supporting collabo- 
rative software development. We believe that VSC can be a 
powerful tool for allowing one developer to communicate her 
viewpoint on the code to another, or to present a viewpoint 
that illustrates the cause of a bug. 

4. What  other features of a system can be discovered through 
the machine-learning/data mining history approach de- 
scribed in section 4.2? We believe that this approach is use- 
ful for at least concern discovery, predictive impact analysis, 
and predictive error analysis. But we also believe that as an 
extremely new technique for taking advantage of the infor- 
mation available in the history of a system, there are likely to 
be other problems that can be approached through this tech- 
nique. 

7. CONCLUSIONS 
In this paper, we presented a new model of concern separation 

called the visual separation of concerns (VSC). VSC allows con- 
cern separation by changing the basic storage model of the system, 
storing programs as fine-grained artifacts rather than source files, 
and allowing programmers to dynamically build views composed 
from collections of fine-grained elements. The VSC model thus 
allows concern separation without introducing new language con- 
structs, languages, or modifications to the semantics of program- 
ming languages. 

We described some of the problems of existing approaches to 
concern separation, including the scatter problem, and described 
how VSC can avoid and even counteract scatter. We also described 
how VSC systems can work synergistically with existing composi- 
tional systems. 

We also discussed some new research directions enabled by the 
the VSC model, including improved concern mapping, and con- 
cern discovery through development history analysis. Finally, we 
discussed some open issues to be addressed by future work. 
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